精英家教网 > 高中数学 > 题目详情
10.“φ=$\frac{π}{2}$”是“曲线y=sin(x+φ)关于y轴对称”的(  )
A.充要条件B.充分且不必要条件
C.必要且不充分条件D.既不充分也不必要条件

分析 根据充分条件和必要条件的定义结合三角函数的性质进行判断即可.

解答 解:若y=sin(x+φ)关于y轴对称,
则φ=$\frac{π}{2}$+kπ,k∈Z,
故“φ=$\frac{π}{2}$”是“曲线y=sin(x+φ)关于y轴对称”的充分不必要条件,
故选:B.

点评 本题主要考查充分条件和必要条件的判断,根据三角函数的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx-ax+$\frac{{x}^{2}}{2}$.
(1)若f(x)为定义域内的单调函数,求实数a的取值范围;
(2)判断函数f(x)的单调性;
(3)对于n∈N+,求证:4ln(n+1)<[22+($\frac{3}{2}$)2+…+($\frac{n+1}{n}$)2]-[($\frac{1}{2}$)2+($\frac{2}{3}$)2+…+($\frac{n}{n+1}$)2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知线段AB过点M(m,0)(m>0),点A、B到x轴的距离之积为4m,抛物线C以x轴为对称轴且经过O、A、B三点.
(1)求抛物线C的方程;
(2)若m=4,求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$\overrightarrow m$=(cosα-$\frac{{\sqrt{2}}}{3}$,-1),$\overrightarrow n$=(sinα,1),$\overrightarrow m$与$\overrightarrow n$为共线向量,且α∈[-$\frac{π}{2}$,0].
(1)求sinα+cosα的值;        
(2)求$\frac{sin2α}{sinα-cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.用数学归纳法证明:“2n>n2+1对于n>n0的正整数n成立”时,第一步证明中的起始值n0应取5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=(1+$\frac{1}{tanx}$)sin2x-2sin(x+$\frac{π}{4}$)•sin(x-$\frac{π}{4}$).
(1)若tanα=2,求f(α)的值;
(2)若x∈[$\frac{π}{12}$,$\frac{π}{2}$],求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,BA1⊥AC1
(1)求证:AC1⊥平面A1BC;
(2)求斜三棱柱ABC-A1B1C1的体积V;
(3)求二面角A-A1B-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)试说明函数g(x)=$\frac{x}{{x}^{2}+1}$的单调性(不要求证明);
(2)设f(x)=tx-(1+t2)x2,其中t>0,区间I={x|f(x)>0},求区间I长度l(t)(注:区间(α,β)的长度定义为β-α)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若实数a,b,c满足a+2b+3c=2,则当a2+2b2+3c2取最小值时,2a+4b+9c的值为5.

查看答案和解析>>

同步练习册答案