精英家教网 > 高中数学 > 题目详情
已知函数f(x)=aln(x+1)-x2,在区间(0,1)内任取两个实数p,q,且p≠q,若不等式
f(p+1)-f(q+1)
p-q
>1恒成立,则实数a的取值范围为(  )
A、[11,+∞)
B、[13,+∞)
C、[15,+∞)
D、[17,+∞)
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:
f(p+1)-f(q+1)
p-q
>1的几何意义:得到直线的斜率,然后,得到函数图象上在区间(1,2)内任意两点连线的斜率大于1,从而得到f′(x)在(1,2)内恒成立.
分离参数后转化为a>2x2+3x+1在(1,2)内恒成立.从而求出a的范围.
解答: 解:∵
f(p+1)-f(q+1)
p-q
>1的几何意义为:
表示点(p+1,f(p+1)) 与点(q+1,f(q+1))连线的斜率,
∵实数p,q在区间(0,1)内,故p+1 和q+1在区间(1,2)内.
不等式
f(p+1)-f(q+1)
p-q
>1恒成立,
∴函数图象上在区间(1,2)内任意两点连线的斜率大于1,
故函数的导数大于1在(1,2)内恒成立.
由函数的定义域知,x>-1,
∴f′(x)=
a
x+1
>1 在(1,2)内恒成立.
即 a>2x2+3x+1在(1,2)内恒成立.
由于二次函数y=2x2+3x+1在[1,2]上是单调增函数,
故 x=2时,y=2x2+3x+1在[1,2]上取最大值为15,
∴a≥15
∴a∈[15,+∞).
故选C.
点评:本题重点考查导数的应用,函数的几何性质等知识,注意分离参数在求解中的灵活运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|1<x≤4,x∈R},集合B={x|a≤x<b,x∈R,a<b},若A⊆B,则下列结论正确的是(  )
A、a=1,b=4
B、a≤1,b=4
C、a<1,b≥4
D、a>1,b≤4

查看答案和解析>>

科目:高中数学 来源: 题型:

经过A(0,
3
),B(1,0)的直线的倾斜角是(  )
A、30°B、60°
C、120°D、135°

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科)抛物线y2=4mx(m>0)的焦点到双曲线
x2
16
-
x2
9
=1的一条渐近线的距离为3,则此抛物线的方程为(  )
A、y2=x
B、y2=15x
C、y2=4x
D、y2=20x

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1+a2+…+an=2n-1,则a12+a22+…+an2等于(  )
A、
4n-1
3
B、4n-1
C、
(2n-1)2
3
D、(2n-1)2

查看答案和解析>>

科目:高中数学 来源: 题型:

星期三上午需要安排语文、数学、英语、物理、化学五节课,其中语文和数学必须排在一起,而物理和化学不能排在一起,则不同的排法共有(  )
A、12种B、20种
C、24种D、48种

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=i2(1+i)的共轭复数是(  )
A、-1-iB、-1+i
C、1-iD、1+i

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各数中最小的数是(  )
A、85(9)
B、210(6)
C、1000(4)
D、1111111(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,2sinA-sinC=cosC•tanB.
(Ⅰ)求角B的大小;
(Ⅱ)设向量
m
=(cosA,cos2A),
n
=(-
12
5
,1),当
m
n
取最小值时,求tan(A-B+
π
12
)的值.

查看答案和解析>>

同步练习册答案