精英家教网 > 高中数学 > 题目详情
7.如图所示,几何体ABCDE中,△ABC为正三角形,CD⊥面ABC,BE∥CD,BC=CD=2BE.
(Ⅰ)在线段AD上找一点F,使EF∥平面ABC,并证明;
(Ⅱ)求证:面ADE⊥面ACD.

分析 (Ⅰ)取线段AC中点M,连结BM,FM,EF,证明出四边形BEFM平行四边形,推断出EF∥BM,进而利用线面平行的判定定理证明出EF∥平面ABC;
(Ⅱ)利用线面垂直的判定定理证明出BM⊥面ACD,进而推断EF⊥面ACD,最后利用面面垂直的判定定理证明出结论

解答 解:(Ⅰ)
点F为线段AD中点,
证明如下:
取线段AC中点M,连结BM,FM,EF,
∵BE∥CD,BC=CD=2BE
则FM∥CD∥BE,且$FM=\frac{1}{2}CD=BE$,
所以四边形BEFM平行四边形,则EF∥BM,
又∵EF?平面ABC,BM⊆平面ABC,
∴EF∥平面ABC;
(Ⅱ)证明:∵△ABC为正三角形,
∴BM⊥AC,
∵CD⊥面ABC,BM⊆平面ABC,
∴CD⊥BM,
∵CD∩AC=C,
∴BM⊥面ACD,
∵EF∥BM,
∴EF⊥面ACD,
又EF⊆平面ADE,
∴面ADE⊥面ACD.

点评 本题主要考查了线面平行和面面垂直的判定定理的运用.考查了学生的一定的空间观察和想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=-x2+mx-n,m,n是区间[0,3]内任意两个实数,则事件f(1)<0发生的概率为$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2$\sqrt{2}$,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=$\frac{\sqrt{2}}{2}$,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.等腰△ABC中,AB=AC,D为AC中点,BD=1,则△ABC面积的最大值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列四个命题中正确命题的是(  )
A.学校抽取每个班级座号为21-30号的同学检查作业完成情况,这是分层抽样
B.可以通过频率分布直方图中最高小矩形的高来估计这组数据的众数
C.设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(-1<ξ<0)=1-p
D.在散点图中,回归直线至少经过一个点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知2cos(π-x)+3cos($\frac{π}{2}$-x)=0,则tan2x=$\frac{12}{5}$,sin2x=$\frac{12}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知三棱锥S-ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为(  )
A.$\frac{1}{4}$B.$\frac{{\sqrt{2}}}{4}$C.$\frac{{\sqrt{2}}}{6}$D.$\frac{{\sqrt{2}}}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设x、y满足$\left\{\begin{array}{l}2x+y≥4\\ x-y≥-1\\ x-2y≤2\end{array}\right.$,则z=x+y(  )
A.有最小值2,最大值3B.有最大值3,无最大值
C.有最小值2,无最大值D.既无最小值,也无最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在一次百米比赛中,甲,乙等6名同学采用随机抽签的方式决定各自的跑道,跑道编号为1至6,每人一条跑道
(Ⅰ)求甲在1或2跑道且乙不在5或6跑道的概率;
(Ⅱ)求甲乙之间恰好间隔两人的概率.

查看答案和解析>>

同步练习册答案