精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=-x2+mx-n,m,n是区间[0,3]内任意两个实数,则事件f(1)<0发生的概率为$\frac{7}{9}$.

分析 由题意,本题是几何概型的考查,只要求出区域对应的面积,利用概率公式解答.

解答 解:函数f(x)=-x2+mx-n,m,n是区间[0,3]内任意两个实数,对应区间的面积为:9;
事件f(1)<0对应的事件为-1+m-n<0,在m,n是区间[0,3]内的前提下对应的区域如图阴影部分,面积为9-$\frac{1}{2}×2×2$=7;
由几何概型公式得到事件f(1)<0发生的概率为$\frac{7}{9}$;
故答案为:$\frac{7}{9}$.

点评 本题考查了几何概型公式的运用;关键是明确事件测度为对应区域的面积;利用面积比求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-c)$\overrightarrow{BA}$•$\overrightarrow{BC}$=c$\overrightarrow{CB}$•$\overrightarrow{CA}$.
(1)求角B的大小;
(2)若|$\overrightarrow{BA}$-$\overrightarrow{BC}$|=2$\sqrt{2}$,求|$\overrightarrow{BA}$|+|$\overrightarrow{BC}$|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.正三角形ABC的边长为2,D,E,F分别在三边AB,BC,CA上,D为AB的中点,DE⊥DF,且DF=$\frac{{\sqrt{3}}}{2}$DE,则∠BDE=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在抽样方法中,有放回抽样与无放回抽样中个体被抽到的概率是不同的,但当总体的容量很大而抽取的样本容量很小时,无放回抽样可以近似看作有放回抽样.现有一大批产品,采用随机抽样的方法一件一件抽取进行检验.若抽查的4件产品中未发现不合格产品,则停止检查,并认为该批产品合格;若在查到第4件或在此之前发现不合格产品,则也停止检查,并认为该批产品不合格.假定该批产品的不合格率为0.1,设检查产品的件数为X.
(Ⅰ) 求随机变量X的分布列和数学期望;
(Ⅱ) 通过上述随机抽样的方法进行质量检查,求认为该批产品不合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图是一个几何体的三视图,则该几何体的体积为36$\sqrt{3}$(π+2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某班50名学生的高校招生体检表中的视力情况进行统计,其结果的频率分布直方图如图所示.若A高校某专业对视力的要求在1.1以上,则该班学生中能报A高校该专业的人数为(  )
A.10B.20C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b3=9,a5+b5=25.
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求数列$\{\frac{a_n}{b_n}\}$的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为$\frac{3}{5}$,但由于体力原因,第7场获胜的概率为$\frac{2}{5}$.
(Ⅰ)求甲队分别以4:2,4:3获胜的概率;
(Ⅱ)设X表示决出冠军时比赛的场数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,几何体ABCDE中,△ABC为正三角形,CD⊥面ABC,BE∥CD,BC=CD=2BE.
(Ⅰ)在线段AD上找一点F,使EF∥平面ABC,并证明;
(Ⅱ)求证:面ADE⊥面ACD.

查看答案和解析>>

同步练习册答案