分析 由已知中的三视图,可知该几何体是一个以俯视图为底面的锥体,分别计算底面面积和高,代入锥体体积公式,可得答案.
解答 解:由已知中的三视图,可知该几何体是一个以俯视图为底面的锥体,
其底面面积S=$\frac{1}{2}$×12×6+$\frac{1}{2}π$×62=18π+36,
锥体的高h=$\sqrt{{12}^{2}-{6}^{2}}$=6$\sqrt{3}$,
故锥体的体积V=$\frac{1}{3}Sh$=36$\sqrt{3}$(π+2),
故答案为:36$\sqrt{3}$(π+2)
点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{8}$ | B. | $\frac{{\sqrt{3}}}{6}$ | C. | $\frac{{\sqrt{3}}}{4}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 有无穷多条直线,每条直线上至少存在两个有理点 | |
| B. | 恰有n(n≥2)条直线,每条直线上至少存在两个有理点 | |
| C. | 有且仅有一条直线至少过两个有理点 | |
| D. | 每条直线至多过一个有理点 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 学校抽取每个班级座号为21-30号的同学检查作业完成情况,这是分层抽样 | |
| B. | 可以通过频率分布直方图中最高小矩形的高来估计这组数据的众数 | |
| C. | 设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(-1<ξ<0)=1-p | |
| D. | 在散点图中,回归直线至少经过一个点 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com