精英家教网 > 高中数学 > 题目详情
1.如图1,在△PBC中,∠C=90°,PC=4,BC=3,PD:DC=5:3,AD⊥PB,将△PAD沿AD边折起到SAD位置,如图2,且使SB=$\sqrt{13}$.
(Ⅰ)求证:SA⊥平面ABCD;
(Ⅱ)求平面SAB与平面SCD所成锐二面角的余弦值.

分析 (Ⅰ)证明SA⊥AB,SA⊥AD,即可证明SA⊥平面ABCD;
(Ⅱ)延长BA,CD相交于P,连接SP,取SP的中点M,连接MA,MD,证明∠AMD为平面SAB与平面SCD所成锐二面角的平面角,求出MA,MD,即可求平面SAB与平面SCD所成锐二面角的余弦值.

解答 (Ⅰ)证明:在直角三角形PBC中,PC=4,BC=3,PD:DC=5:3,
所以PB=5,PD=2.5,DC=1.5,
因为∠PAD=∠C=90°,∠P=∠P,
所以△PAD∽△PCB,
所以$\frac{PA}{AC}=\frac{PD}{PB}=\frac{AD}{BC}$,
所以PA=2,AB=PB-PA=3,AD=1.5,
△SAB中,SA=PA=2,SB=$\sqrt{13}$,
所以SA2+AB2=SB2
所以SA⊥AB
因为AD∥PB,
所以SA⊥AD,
因为AB∩AD=A,
所以SA⊥平面ABCD;
(Ⅱ)解:在图2中,延长BA,CD相交于P,连接SP,取SP的中点M,连接MA,MD,则
因为PA=SA,PD=SD,
所以MA⊥SP,MD⊥SP,
所以∠AMD为平面SAB与平面SCD所成锐二面角的平面角,
因为SA⊥AD,AD⊥PB,SA∩PB=A,
所以AD⊥平面SPB,
因为MA?平面SPB,
所以AD⊥MA.
在直角三角形SPA中,PA=SA=2,M为SP的中点,
所以SP=2$\sqrt{2}$,MA=$\sqrt{2}$,
在△SPD中,PD=SD=2.5,M为SP中点,所以MD=$\frac{\sqrt{17}}{2}$,
所以cos∠AMP=$\frac{MA}{MD}$=$\frac{2\sqrt{34}}{17}$,
所以平面SAB与平面SCD所成锐二面角的余弦值为$\frac{2\sqrt{34}}{17}$.

点评 考查线面垂直的性质于判定定理,考查平面SAB与平面SCD所成锐二面角的余弦值,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知{an}{bn}是两个项数相同的等比数列,仿照表中的例子填写表格,从中你能得出什么结论?证明你的结论.
 anbnan•bn判断{an•bn}是否是等比数列
3×($\frac{2}{3}$)n -5×2n-1 -10×($\frac{4}{3}$)n-1 是 
自选1    
自选2    

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,其参考数据如下:
f (1)=-2f (1.5)=0.625f (1.25)=-0.984
f (1.375)=-0.260f (1.4375)=0.162f (1.40625)=-0.054
那么方程x3+x2-2x-2=0的一个近似根(精确度为0.05)可以是(  )
A.1.25B.1.375C.1.42D.1.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上的点到左准线的距离为5,那么它到右焦点的距离为(  )
A.$\frac{25}{4}$B.$\frac{15}{2}$C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则ω,φ的值分别为(  )
A.2,-$\frac{π}{3}$B.2,-$\frac{π}{6}$C.4,-$\frac{π}{6}$D.4,$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知全集U={1,2,3,4,5},集合 A={1,4},B={1,3,5},则(∁UA)∩(∁UB)=(  )
A.{2}B.{1,2}C.{3,5}D.{4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.由动点 P向圆x2+y2=1引两条切线,切点分别为 A、B,若$\overrightarrow{{P}{A}}$•$\overrightarrow{{P}{B}}$=$\frac{3}{2}$,则动点 P的轨迹方程为(  )
A.x2+y2=2B.x2+y2=$\frac{9}{4}$C.x2+y2=4D.x2+y2=9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点A($\frac{π}{8}$,f($\frac{π}{8}$))和直线x=$\frac{3π}{8}$分别是函数f(x)=2$\sqrt{2}$sin?xsin(?x+$\frac{π}{4}$)(?>0)相邻的一个对称中心和一条对称轴,将函数f(x)的图象向右平移φ个单位得到函数g(x)的图象,若当x=$\frac{π}{3}$时,g(x)取最大值,则g(x)在[-$\frac{π}{2}$,0]上单调增区间为[-$\frac{π}{6}$,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=(m-2)x2+mx+(2m+1)的两个零点分别在区间(-1,0)和区间(1,2)内,则实数m的取值范围是(  )
A.[$\frac{1}{4}$,$\frac{1}{2}$]B.($\frac{1}{4}$,$\frac{1}{2}$)C.(-$\frac{1}{2}$,$\frac{1}{4}$)D.($\frac{1}{4}$,$\frac{1}{2}$)

查看答案和解析>>

同步练习册答案