分析 (1)由已知得a=2,又e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,故c=$\sqrt{3}$,b=1,即可求椭圆M的方程;
(2)分类讨论,y=kx+2代入椭圆方程消去y,得(1+4k2)x2+16kx+12=0,利用数量积公式求$\overrightarrow{OC}$•$\overrightarrow{OD}$的取值范围;
(3)由题意得:AD:y=$\frac{{y}_{2}-1}{{x}_{2}}$x+1,BC:y=$\frac{{y}_{1}+1}{{x}_{1}}$x-1,联立方程组,消去x,解得y=$\frac{2k{x}_{1}{x}_{2}+{x}_{1}+3{x}_{2}}{3{x}_{2}-{x}_{1}}$,即可得出结论.
解答 解:(1)由已知得a=2,
又e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,故c=$\sqrt{3}$,b=1,
∴椭圆M的方程$\frac{{x}^{2}}{4}+{y}^{2}=1$.…(4分)
(2)①当直线l斜率不存在时,C(0,1),D(0,-1),$\overrightarrow{OC}$•$\overrightarrow{OD}$=-1;…(5分)
当直线斜率存在时,设直线l方程为y=kx+2,C(x1,y1),D(x2,y2),则
y=kx+2代入椭圆方程消去y,得(1+4k2)x2+16kx+12=0,
x1+x2=-$\frac{16k}{1+4{k}^{2}}$,x1x2=$\frac{12}{1+4{k}^{2}}$,
△>0,可得4k2>3,…(7分)
$\overrightarrow{OC}$•$\overrightarrow{OD}$=x1x2+y1y2=-1+$\frac{17}{1+4{k}^{2}}$,
∴得-1<$\overrightarrow{OC}$•$\overrightarrow{OD}$<$\frac{13}{4}$.
综上可知,$\overrightarrow{OC}$•$\overrightarrow{OD}$的取值范围是[-1,$\frac{13}{4}$).…(10分)
②由题意得:AD:y=$\frac{{y}_{2}-1}{{x}_{2}}$x+1,BC:y=$\frac{{y}_{1}+1}{{x}_{1}}$x-1,
联立方程组,消去x,解得y=$\frac{2k{x}_{1}{x}_{2}+{x}_{1}+3{x}_{2}}{3{x}_{2}-{x}_{1}}$,
又4kx1x2=-3(x1+x2),得y=$\frac{1}{2}$.
∴点Q的纵坐标为定值$\frac{1}{2}$.…(15分)
点评 本题考查椭圆方程,考查直线与椭圆的位置关系,考查向量知识的运用,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 甲得9张,乙得3张 | B. | 甲得6张,乙得6张 | ||
| C. | 甲得8张,乙得4张 | D. | 甲得10张,乙得2张 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com