精英家教网 > 高中数学 > 题目详情
11.如果实数x,y满足条件$\left\{\begin{array}{l}{x+y-3≥0}\\{x-2≤0}\\{y-2≤0}\end{array}\right.$,则z=$\frac{y}{x}$的最大值为2.

分析 作出平面区域,则$\frac{y}{x}$表示过原点和平面区域内一点的直线斜率.

解答 解:作出平面区域如图所示:

由平面区域可知当直线y=kx过A点时,斜率最大.
解方程组得$\left\{\begin{array}{l}{y=2}\\{x+y-3=0}\end{array}\right.$得A(1,2).
∴z的最大值为$\frac{2}{1}$=2.
故答案为:2.

点评 本题考查了简单的线性规划,作出平面区域,找到z=$\frac{y}{x}$的几何意义是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设函数$f(x)=cos(2x+\frac{π}{3})+{sin^2}x$.
(1)求函数f(x)的单调递增区间;
(2)若$0<α<\frac{π}{2}<β<π$,$f(\frac{π}{4}-\frac{β}{2})=\frac{1}{2}+\frac{{\sqrt{3}}}{6}$,$f(\frac{α+β}{2})=\frac{1}{2}-\frac{{7\sqrt{3}}}{18}$,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex+ax-1(a∈R).
(I)求f(x)的单调区间:
(Ⅱ)若f(x)≥x2对x≥0都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.平面直角坐标系中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的两点M,N关于原点对称,P为椭圆上异于M,N的两点,若直线PM,PN的斜率分别为k1,k2(k1,k2存在且不为0),椭圆的离心率$\frac{\sqrt{2}}{2}$.
(1)求k1•k2的值;
(2)若F1,F2是椭圆C左、右焦点,且直线PF1交椭圆C于Q,若△PF2Q的面积最大值为$\sqrt{2}$时,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(1)求f(x)的单调区间;
(2)若对于任意的x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.
(3)设函数h(x)=f(x)-a(x-1),其中a∈R,求函数h(x)在[1,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,sinA=$\frac{3}{5}$,cosB=$-\frac{5}{13}$,则sinC=$\frac{33}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3-ax2+3x在[2,4]上是单调递增函数,求参数a的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等比数列{an}的前n项和为Sn,若S3=2,S9=146,求S6的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,若a=$\frac{\sqrt{5}}{2}$b,A=2B,则cosB等于(  )
A.$\frac{\sqrt{5}}{3}$B.$\frac{\sqrt{5}}{4}$C.$\frac{\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{6}$

查看答案和解析>>

同步练习册答案