精英家教网 > 高中数学 > 题目详情
7.设函数f(x)=|x+1|+|x-a|
(1)若对于任意的实数x,不等式f(x)≥2恒成立,求实数a的取值范围;
(2)当a=2时,不等式f(x)≥k(x+1)+2恒成立,求实数k的取值范围.

分析 (1)根据绝对值的意义,|x+1|+|x-a|的最小值为|a+1|,由|a+1|≥2,求得实数a的取值范围;
(2)由题意可得f(x)的图象恒在直线y=ax的上方.再根据f(x)的表达式,画出图形,数形结合求得a的范围.

解答 解:(1)根据绝对值的意义,|x+1|+|x-a|表示数轴上的x对应点到-1、a对应点的距离之和,
它的最小值为|a+1|,
若不等式f(x)≥2对任意的实数x恒成立,则|a+1|≥2,求得a≥1,或a≤-3,
故实数a的取值范围为(-∞,-3]∪[1,+∞);
(2)由于不等式|x+1|+|x-2|≥k(x+1)+2恒成立,即f(x)的图象恒在直线y=k(x+1)+2的上方.
再根据f(x)=$\left\{\begin{array}{l}{-2x+1,x<-1}\\{3,-1≤x<2}\\{2x-1,x≥2}\end{array}\right.$,画出图形,如图:

故直线y=k(x+1)+2的斜率k满足-2≤k≤$\frac{1}{3}$,
即a的范围为[-2,$\frac{1}{3}$].

点评 本题主要考查绝对值的意义,带由绝对值的函数,函数的恒成立问题,体现了转化、数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知$\overrightarrow{m}$=(3cosx,$\sqrt{3}$sinx),$\overrightarrow{n}$=(2cosx,-2cosx),函数f(x)=$\overrightarrow{m}•\overrightarrow{n}$
(1)求f(x)的最小正周期和单调减区间
(2)在△ABC中,锐角B满足f(B)=0,b=2,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={0,1,2,3},集合B={x|x2≤4},则A∩B=(  )
A.{3}B.{1,2}C.{0,1,2}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE,
(1)求证:平面ADE⊥平面BCE;
(2)求点D到平面AEC的距离;
(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数y=3sin(-2x+φ-$\frac{π}{4}$)为偶函数,则φ的取值范围为{φ|φ=kπ+$\frac{3π}{4}$,k∈z }.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知∠ACB=90°,∠ACB所在平面外有一点P,PC=24cm,点P到∠ACB两边的距离均为6$\sqrt{10}$cm,求PC与平面ABC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“0<a<2”是“双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1(a>0)的离心率大于2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.双曲线$\frac{{x}^{2}}{4}$-y2=1的焦距为2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$ (a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,若中左焦点为F(-2,0)
(1)求椭圆C的方程
(2)若斜率为1的直线过椭圆C的右焦点且与椭圆交于A,B两点,求|AB|的长.

查看答案和解析>>

同步练习册答案