精英家教网 > 高中数学 > 题目详情
19.“0<a<2”是“双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1(a>0)的离心率大于2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 先写出双曲线的离心率e=$\sqrt{1+\frac{9}{{a}^{2}}}$,然后判断0<a<2能否得到e>2,e>2又能否得到0<a<2,这样根据充分条件、必要条件,以及必要不充分条件的概念即可找出正确选项.

解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{9}=1$的离心率e=$\frac{\sqrt{{a}^{2}+9}}{a}=\sqrt{1+\frac{9}{{a}^{2}}}$;
(1)若0<a<2,则0$<{a}^{2}<4,\frac{1}{{a}^{2}}>\frac{1}{4}$;
∴$1+\frac{9}{{a}^{2}}>\frac{13}{4}$;
∴$\sqrt{1+\frac{9}{{a}^{2}}}>\frac{\sqrt{13}}{2}$,即e>$\frac{\sqrt{13}}{2}$;
∵$\frac{\sqrt{13}}{2}<2$;
∴$e>\frac{\sqrt{13}}{2}$得不到e>2;
∴“0<a<2”不是“双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1(a>0)的离心率大于2”的充分条件;
(2)若双曲线的离心率大于2;
即$\sqrt{1+\frac{9}{{a}^{2}}}>2$,a>0;
∴解得$0<a<\sqrt{3}$;
∴一定得到0<a<2;
∴“0<a<2”是“双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1(a>0)的离心率大于2”的必要条件;
综上得“0<a<2”是“双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1(a>0)的离心率大于2”的必要不充分条件.
故选B.

点评 考查充分条件,必要条件,以及必要不充分条件的概念,双曲线离心率的概念及计算公式,不等式的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列各点中,在曲线x2-xy+2y+1=0上的点是(  )
A.(2,-2)B.(4,-3)C.(3,10)D.(-2,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=x4-ax(a>0)的零点都在区间[0,5]上,则函数g(x)=$\frac{1}{x}$与函数h(x)=x3-a的图象的交点的横坐标为正整数时,实数a的所有取值中最大值为(  )
A.$\frac{80}{3}$B.$\frac{255}{4}$C.$\frac{624}{5}$D.$\frac{1295}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=|x+1|+|x-a|
(1)若对于任意的实数x,不等式f(x)≥2恒成立,求实数a的取值范围;
(2)当a=2时,不等式f(x)≥k(x+1)+2恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知曲线C的极坐标方程是ρ=2cosθ,设直线L的参数方程是$\left\{\begin{array}{l}{x=-\frac{2}{3}t+2}\\{y=\frac{2}{3}t+5}\end{array}\right.$(t为参数).
(1)将曲线C的极坐标方程转化为直角坐标方程;
(2)设直线L与x轴的交点是M,N为曲线C上一动点,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在河岸边有一点A,河对岸有一点B,要测量A,B两点的距离,现在岸边取基线AC,测得AC=120m,∠BAC=45°,∠BCA=75°,求A,B两点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{a•{2}^{x}+a-2}{{2}^{x}+1}$(x∈R),满足:f(-x)=-f(x)
(Ⅰ)求a的值;
(Ⅱ)求函数f(x)的值域;
(Ⅲ)判断函数f(x)在其定义域上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆的两个焦点为F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),离心率e=$\frac{\sqrt{3}}{2}$.
(1)求椭圆的方程;
(2)设直线l:y=x+m,若l与椭圆交于P,Q两点,且|PQ|等于椭圆的短轴长,求m 的值;
(3)若直线l:y=x+m,若l与椭圆交于两个不同的点A和B,且使$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,问这样的直线存在吗?若存在求m的值,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆C的方程;
(2)设直线l:y=kx+m(|k|≤$\frac{\sqrt{3}}{3}$)与椭圆C相较于A,B两点,以线段OA,OB为邻边作?OAPB,其中定点P在椭圆C上,O为坐标原点,求|OP|的取值范围.

查看答案和解析>>

同步练习册答案