8£®ÒÑÖªÍÖÔ²µÄÁ½¸ö½¹µãΪF1£¨-$\sqrt{3}$£¬0£©£¬F2£¨$\sqrt{3}$£¬0£©£¬ÀëÐÄÂÊe=$\frac{\sqrt{3}}{2}$£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßl£ºy=x+m£¬ÈôlÓëÍÖÔ²½»ÓÚP£¬QÁ½µã£¬ÇÒ|PQ|µÈÓÚÍÖÔ²µÄ¶ÌÖ᳤£¬Çóm µÄÖµ£»
£¨3£©ÈôÖ±Ïßl£ºy=x+m£¬ÈôlÓëÍÖÔ²½»ÓÚÁ½¸ö²»Í¬µÄµãAºÍB£¬ÇÒʹ$\overrightarrow{OA}$•$\overrightarrow{OB}$=0£¬ÎÊÕâÑùµÄÖ±Ïß´æÔÚÂð£¿Èô´æÔÚÇómµÄÖµ£¬Èô²»´æÔÚ˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍa£¬b£¬cµÄ¹ØÏµ£¬¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÏûÈ¥y£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬½â·½³Ì¿ÉµÃm£»
£¨3£©Ö±Ïßy=x+m´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí£¬½áºÏOA¡ÍOB⇒$\overrightarrow{OA}$•$\overrightarrow{OB}$=0£¬¼´¿ÉÇómÖµ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃc=$\sqrt{3}$£¬e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬
ÓÖb2=a2-c2=4-3=1£¬
¼´ÓÐÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£»
£¨2£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©
ÓÉÌâÒâµÃ $\left\{\begin{array}{l}{y=x+m}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$⇒x2+4£¨m+x£©2-4=0⇒5x2+8mx+4m2-4=0£¨*£©
ËùÒÔx1+x2=-$\frac{8m}{5}$£¬x1x2=$\frac{4{m}^{2}-4}{5}$£¬
ÓÉÌâÒâ¿ÉµÃ|PQ|=$\sqrt{1+1}$•$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2}•$$\sqrt{\frac{64{m}^{2}}{25}-\frac{16£¨{m}^{2}-1£©}{5}}$=2£¬
½âµÃm=¡À$\frac{\sqrt{30}}{4}$£»
£¨3£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©
ÓÉÌâÒâµÃ $\left\{\begin{array}{l}{y=x+m}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$⇒x2+4£¨m+x£©2-4=0⇒5x2+8mx+4m2-4=0£¨*£©
ËùÒÔx1+x2=-$\frac{8m}{5}$£¬x1x2=$\frac{4{m}^{2}-4}{5}$£¬
y1y2=£¨m+x1£©£¨m+x2£©=m2+m£¨x1+x2£©+x1x2=m2-$\frac{8}{5}$m2+$\frac{4{m}^{2}-4}{5}$=$\frac{{m}^{2}-4}{5}$£¬
ÓÉOA¡ÍOB⇒$\overrightarrow{OA}$•$\overrightarrow{OB}$=0£¬µÃx1x2+y1y2=0£¬
¼´Îª$\frac{4{m}^{2}-4}{5}$+$\frac{{m}^{2}-4}{5}$=0£¬½âµÃm=¡À$\frac{2\sqrt{10}}{5}$£¬
ÓÖ·½³Ì£¨*£©ÒªÓÐÁ½¸ö²»µÈʵ¸ù£¬¡÷=£¨-8m£©2-4¡Á5£¨4m2-4£©£¾0£¬
-$\sqrt{5}$£¼m£¼$\sqrt{5}$£¬mµÄÖµ·ûºÏÉÏÃæÌõ¼þ£®
ËùÒÔm=¡À$\frac{2\sqrt{10}}{5}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÍÖÔ²µÄÀëÐÄÂʺͷ½³ÌµÄÔËÓã¬ÁªÁ¢Ö±Ïß·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬ÒÔ¼°ÏÒ³¤¹«Ê½£¬ºÍÖ±Ïß´¹Ö±µÄÌõ¼þ£¬»¯¼òÕûÀí£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖª¼¯ºÏA={0£¬1£¬2£¬3}£¬¼¯ºÏB={x|x2¡Ü4}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®{3}B£®{1£¬2}C£®{0£¬1£¬2}D£®{0£¬1£¬2£¬3}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®¡°0£¼a£¼2¡±ÊÇ¡°Ë«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1£¨a£¾0£©µÄÀëÐÄÂÊ´óÓÚ2¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Ë«ÇúÏß$\frac{{x}^{2}}{4}$-y2=1µÄ½¹¾àΪ2$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÍÖÔ²CµÄÖÐÐÄÔÚ×ø±êÔ­µã£¬F£¨1£¬0£©ÎªÍÖÔ²CµÄÒ»¸ö½¹µã£¬µãP£¨2£¬y0£©ÎªÍÖÔ²CÉÏÒ»µã£¬ÇÒ|PF|=1£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Èô¹ýµãM£¨0£¬m£©µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãA¡¢B£¬ÇÒ$\overrightarrow{AM}$=3$\overrightarrow{MB}$£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖª£º¹ýÅ×ÎïÏßx2=4yµÄ½¹µãFµÄÖ±Ïß½»Å×ÎïÏßÓÚA£¬BÁ½¸ö²»Í¬µÄµã£¬¹ýA£¬B·Ö±ð×÷Å×ÎïÏßµÄÇÐÏߣ¬ÇÒ¶þÕßÏཻÓÚµãC£®
£¨1£©ÇóÖ¤£º$\overrightarrow{AB}$•$\overrightarrow{CF}$=0£»
£¨2£©Çó¡÷ABCµÄÃæ»ýµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èôa£¾0£¬¼¯ºÏA={£¨x£¬y£©|x¡Ü3£¬x+y-4¡Ü0£¬x-y+2a¡Ý0}£¬B={£¨x£¬y£©||x-1|+|y-1|¡Üa}£®Èô¡°µãM£¨x£¬y£©¡ÊA¡±ÊÇ¡°µãM£¨x£¬y£©¡ÊB¡±µÄ±ØÒª²»³ä·ÖÌõ¼þ£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨0£¬2£©B£®£¨1£¬3£©C£®£¨0£¬2]D£®[1£¬3]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÉèÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$ £¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÈôÖÐ×ó½¹µãΪF£¨-2£¬0£©
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì
£¨2£©ÈôбÂÊΪ1µÄÖ±Ïß¹ýÍÖÔ²CµÄÓÒ½¹µãÇÒÓëÍÖÔ²½»ÓÚA£¬BÁ½µã£¬Çó|AB|µÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÃüÌâp£ºm2-m-6¡Ü0£»ÃüÌâq£º²»µÈʽ4x2+4£¨m+2£©x+1¡Ý0¶Ôx¡ÊRºã³ÉÁ¢£®ÃüÌâp¡ÄqÎªÕæ£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸