精英家教网 > 高中数学 > 题目详情
14.已知曲线C的极坐标方程是ρ=2cosθ,设直线L的参数方程是$\left\{\begin{array}{l}{x=-\frac{2}{3}t+2}\\{y=\frac{2}{3}t+5}\end{array}\right.$(t为参数).
(1)将曲线C的极坐标方程转化为直角坐标方程;
(2)设直线L与x轴的交点是M,N为曲线C上一动点,求|MN|的最大值.

分析 (1)先在极坐标方程ρ=2cosθ的两边同乘以ρ,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.
(2)确定圆的半径为1,圆心的直角坐标为(1,0).求出M的坐标,即可求|MN|的最大值.

解答 解:(1)将方程ρ=2cosθ两边都乘以ρ得:ρ2=2ρcosθ,
化成直角坐标方程为x2+y2-2x=0.
(2)x2+y2=2x,即(x-1)2+y2=1,半径为1,圆心的直角坐标为(1,0).
直线L的参数方程是$\left\{\begin{array}{l}{x=-\frac{2}{3}t+2}\\{y=\frac{2}{3}t+5}\end{array}\right.$,可得M(7,0)
所以|MN|的最大值为7+1=8.

点评 本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知数据x1,x2,…,x10的方差为1,且(x1-2)2+(x2-2)2+(x3-2)2+…+(x10-2)2=170,则数据x1.x2,x3,…,x10的平均数是-2或6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.房山区某高中为了推进新课程改革,满足学生全面发展的需求,决定从高一年级开始,在每周的周一、周三、周五的格外活动期间同时开设信息技术、美术素描和音乐欣赏辅导讲座,每位同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座.(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表:
信息技术美术素描音乐欣赏
周一$\frac{1}{4}$$\frac{1}{4}$$\frac{1}{2}$
周三$\frac{1}{2}$$\frac{1}{2}$$\frac{2}{3}$
周五$\frac{1}{3}$$\frac{1}{3}$$\frac{2}{3}$
(1)求音乐欣赏辅导讲座在周一、周三、周五都不满座的概率;
(2)设周三各辅导讲座满座的科目数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数y=3sin(-2x+φ-$\frac{π}{4}$)为偶函数,则φ的取值范围为{φ|φ=kπ+$\frac{3π}{4}$,k∈z }.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知复数z1=4-mi,z2=6m+ni,且m、n∈R,若z2=z12,则实数n=(  )
A.-2,8B.2,-8C.64,-16D.16,-64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“0<a<2”是“双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1(a>0)的离心率大于2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知an=3n•(3n-2),求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C的中心在坐标原点,F(1,0)为椭圆C的一个焦点,点P(2,y0)为椭圆C上一点,且|PF|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(0,m)的直线l与椭圆C交于不同的两点A、B,且$\overrightarrow{AM}$=3$\overrightarrow{MB}$,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点.在此几何体中,给出下面四个结论:
①B,E,F,C四点共面; 
②直线BF与AE异面;
③直线EF∥平面PBC; 
④平面BCE⊥平面PAD;.
⑤折线B→E→F→C是从B点出发,绕过三角形PAD面,到达点C的一条最短路径.
其中正确的有①②③.(请写出所有符合条件的序号)

查看答案和解析>>

同步练习册答案