精英家教网 > 高中数学 > 题目详情
5.房山区某高中为了推进新课程改革,满足学生全面发展的需求,决定从高一年级开始,在每周的周一、周三、周五的格外活动期间同时开设信息技术、美术素描和音乐欣赏辅导讲座,每位同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座.(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表:
信息技术美术素描音乐欣赏
周一$\frac{1}{4}$$\frac{1}{4}$$\frac{1}{2}$
周三$\frac{1}{2}$$\frac{1}{2}$$\frac{2}{3}$
周五$\frac{1}{3}$$\frac{1}{3}$$\frac{2}{3}$
(1)求音乐欣赏辅导讲座在周一、周三、周五都不满座的概率;
(2)设周三各辅导讲座满座的科目数为X,求随机变量X的分布列和数学期望.

分析 (1)设数学辅导讲座在周一、周三、周五都不满座为事件A,利用对立事件和独立事件同时发生的概率计算公式能够求出数学辅导讲座在周一、周三、周五都不满座的概率.
(2)X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.

解答 解:(1)设数学辅导讲座在周一、周三、周五都不满座为事件A,
则P(A)=(1-$\frac{1}{2}$)×(1-$\frac{2}{3}$)×(1-$\frac{2}{3}$)=$\frac{1}{18}$.
(2)X的可能取值为0,1,2,3,
P(X=0)=(1-$\frac{1}{2}$)×(1-$\frac{1}{2}$)×(1-$\frac{2}{3}$)=$\frac{1}{12}$,
P(X=1)=$\frac{1}{2}$×(1-$\frac{1}{2}$)×(1-$\frac{2}{3}$)+(1-$\frac{1}{2}$)×$\frac{1}{2}$×(1-$\frac{2}{3}$)+(1-$\frac{1}{2}$)×(1-$\frac{1}{2}$)×$\frac{2}{3}$=$\frac{1}{3}$,
P(X=2)=$\frac{1}{2}$×$\frac{1}{2}$×(1-$\frac{2}{3}$)+(1-$\frac{1}{2}$)×$\frac{1}{2}$×$\frac{2}{3}$+$\frac{1}{2}$×(1-$\frac{1}{2}$)×$\frac{2}{3}$=$\frac{5}{12}$,
P(X=3)=$\frac{1}{2}$×$\frac{1}{2}$×$\frac{2}{3}$=$\frac{1}{6}$,
∴随机变量X的分布列如下:

 X 0 1 2 3
 P $\frac{1}{12}$ $\frac{1}{3}$ $\frac{5}{12}$ $\frac{1}{6}$
故Eξ=0×$\frac{1}{12}$+1×$\frac{1}{3}$+2×$\frac{5}{12}$+3×$\frac{1}{6}$=$\frac{5}{3}$.

点评 本题考查离散随机变量的概率分布列和数学期望,是历年高考的必考题型之一.解题时要认真审题,注意排列组合知识和概率知识的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=cos2x-sin2x+2sinxcosx.
(1)求f(x)的单调递增区间;
(2)设α、β∈[0,$\frac{π}{2}$],f($\frac{α}{2}$+$\frac{π}{8}$)=$\frac{\sqrt{5}}{2}$,f($\frac{β}{2}$+π)=$\sqrt{2}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,等腰三角形OAB(O为坐标原点)的顶点A,B的坐标分别为(6,0),(3,3),AB与直线y=$\frac{1}{2}$x交于点C,在△OAB中任取一点P,则点P落在△OBC中的概率(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知符号函数sgn(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,则函数f(x)=sgn(lnx)-|lnx|的零点个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.从A,B,C,D,E5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为(  )
A.24B.48C.72D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=x4-ax(a>0)的零点都在区间[0,5]上,则函数g(x)=$\frac{1}{x}$与函数h(x)=x3-a的图象的交点的横坐标为正整数时,实数a的所有取值中最大值为(  )
A.$\frac{80}{3}$B.$\frac{255}{4}$C.$\frac{624}{5}$D.$\frac{1295}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆G:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,过其右焦点与长轴垂直的弦长为1,如图,A,B是椭圆的左右顶点,M是椭圆上位于x轴上方的动点,直线AM,BM与直线l:x=4分别交于C,D两点.
(Ⅰ)求椭圆G的标准方程;
(Ⅱ)若|CD|=4,求点M的坐标;
(Ⅲ)记△MAB和△MCD的面积分别为S1和S2,若λ=$\frac{{S}_{1}}{{S}_{2}}$,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知曲线C的极坐标方程是ρ=2cosθ,设直线L的参数方程是$\left\{\begin{array}{l}{x=-\frac{2}{3}t+2}\\{y=\frac{2}{3}t+5}\end{array}\right.$(t为参数).
(1)将曲线C的极坐标方程转化为直角坐标方程;
(2)设直线L与x轴的交点是M,N为曲线C上一动点,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知坐标平面内两点A=($\sqrt{3}$,-1),B=($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),O为原点.
(1)证明OA⊥OB;
(2)设$\overrightarrow{a}$=$\overrightarrow{OA}$,$\overrightarrow{b}$=$\overrightarrow{OB}$,若存在不同时为零的实数k、t,使得$\overrightarrow{x}$=$\overrightarrow{a}$+(t2-3)$\overrightarrow{b}$,$\overrightarrow{y}$=-k$\overrightarrow{a}$+t$\overrightarrow{b}$,且$\overrightarrow{x}$⊥$\overrightarrow{y}$,求函数关系式k=f(t).

查看答案和解析>>

同步练习册答案