精英家教网 > 高中数学 > 题目详情
13.已知M是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上一点,焦点为F1,F2,则△MF1F2的周长是16.

分析 求得椭圆的a,b,c,运用椭圆的定义,即可得到所求周长.

解答 解:椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的a=5,b=4,c=$\sqrt{{a}^{2}-{b}^{2}}$=3,
由椭圆的定义可得|MF1|+|MF2|=2a=10,
又|F1F2|=2c=6,
则△MF1F2的周长是|MF1|+|MF2|+|F1F2|=10+6=16.
故答案为:16.

点评 本题考查椭圆的定义、方程和性质,注意运用定义法是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$=(3,-2,1),$\overrightarrow{b}$=(-2,4,0),则4$\overrightarrow{a}$+2$\overrightarrow{b}$等于(  )
A.(16,0,4)B.(8,0,4)C.(8,16,4)D.(8,-16,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是线段AB,CC1的中点,∨MB1P的顶点P在棱CC1与棱C1D1上运动,有以下四个命题:
①平面MB1P⊥ND1
②平面MB1P⊥平面ND1A1
③∨MB1P在底面ABCD上的射影图形的面积为定值;
④△MB1P在侧面DD1C1C上的射影图形是三角形.
其中正确的命题序号是(  )
A.B.①③C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知F1(-2,0),F2(2,0),点P满足|PF1|-|PF2|=2,记点P的轨迹为E.
(1)求轨迹E的方程;
(2)若直线l过点F2且与轨迹E交于P、Q两点.
(i)无论直线l绕点F2怎样转动,在x轴上总存在定点M(m,0),使MP⊥MQ恒成立,求实数m的值.
(ii)在(i)的条件下,求△MPQ面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=$\sqrt{-{x^2}+4x-3}$的定义域是(  )
A.(-∞,1]B.[3,+∞)C.[1,3]D.(-∞,1]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\overrightarrow{a}$,$\overrightarrow{b}$是单位向量,且$\overrightarrow{a}•\overrightarrow{b}$=-$\frac{1}{2}$.若平面向量$\overrightarrow{p}$满足$\overrightarrow{p}•\overrightarrow{a}$=$\overrightarrow{p}•\overrightarrow{b}$=$\frac{1}{2}$,则|$\overrightarrow{p}$|=(  )
A.2B.$\sqrt{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数g(x)=ax3+2x2+3ax在区间(-∞,$\frac{a}{3}$)内单凋递减,则a的取值范围是(  )
A.(-∞,0]B.[$-\frac{2}{3}$,$\frac{2}{3}$]C.(-∞,-$\frac{2}{3}$]D.(-∞,-$\frac{2}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}满足:a1=2,8an+1=2an+$\sqrt{1+4{a}_{n}}$-1(n∈N),bn=$\sqrt{1+4{a}_{n}}$(n∈N),数列cn=$\frac{n({b}_{n}-1)}{4}$,n∈N*,记数列{cn}的前n项和为Sn,求证:Sn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中是奇函数的是(  )
A.y=-|sinx|B.y=sin(-|x|)C.y=sin|x|D.y=xsin|x|

查看答案和解析>>

同步练习册答案