精英家教网 > 高中数学 > 题目详情
18.若复数z满足z(2+3i)=1+i(其中i为虚数单位),则复数z在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 设z=a+bi,由复数z满足z(2+3i)=1+i,求出复数z=$\frac{5}{13}-\frac{1}{13}i$,由此能求出结果.

解答 解:设z=a+bi,
∵复数z满足z(2+3i)=1+i,
∴(a+bi)(2+3i)=(2a-3b)+(3a+2b)i=1+i,
∴$\left\{\begin{array}{l}{2a-3b=1}\\{3a+2b=1}\end{array}\right.$,
解得a=$\frac{5}{13}$,b=-$\frac{1}{13}$,
∴复数z=$\frac{5}{13}-\frac{1}{13}i$在复平面内对应的点($\frac{5}{13},-\frac{1}{13}$)在第四象限.
故选:D.

点评 本题考查复数在复平面内对应的点所在象限的判断,是基础题,解题时要认真审题,注意复数的代数形式的运算法则及几何意义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.从集合{0.3,0.5,3,4,5,6}中任取3个不同的元素,分别记为x,y,z,则lgx•lgy•lgz<0的概率为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知动点P(x,y)在椭圆$\frac{x^2}{25}$+$\frac{y^2}{16}$=1上,过坐标原点的直线BC与椭圆相交,交点为B,C,点Q是三角形PBC的重心,若点A的坐标为(3,0),|${\overrightarrow{AM}}$|=1,$\overrightarrow{QM}$•$\overrightarrow{AM}$=0,则|${\overrightarrow{QM}}$|的最小值是$\frac{{\sqrt{7}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一艘海轮从A处出发,以40海里/时的速度沿东偏南50°方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是东偏南20°,在B处观察灯塔,其方向是北偏东65°,求B,C两点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知直线l1:kx+y=0和直线l2:kx+y+b=0(b>0),射线OC的一个法向量为$\overrightarrow{n_3}$=(-k,1),点O为坐标原点,且k≥0,直线l1和l2之间的距离为2,点A、B分别是直线l1、l2上的动点,P(4,2),PM⊥l1于点M,PN⊥OC于点N;
(1)若k=1,求|OM|+|ON|的值;
(2)若|$\overrightarrow{PA}$+$\overrightarrow{PB}$|=8,求$\overrightarrow{PA}$•$\overrightarrow{PB}$的最大值;
(3)若k=0,AB⊥l2,且Q(-4,-4),试求|PA|+|AB|+|BQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx-a(x-1),其中a为实数.
(Ⅰ)讨论并求出f(x)的极值;
(Ⅱ)若x≥1时,不等式f(x)≤a(x-1)2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.根据如下样本数据
x34567
y4a+b-4-0.50.5-2
得到的回归直线方程为$\hat y=bx+a$.若样本中心为(5,0.9),则x每减少1个单位,y就(  )
A.增加1.4个单位B.减少1.4个单位C.增加1.2个单位D.减少1.2个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a,b表示两条不同的直线,α,β表示两个不重合的平面,给出下列四个命题:
①若α∥β,a?α,b?β,则a∥b;
②若a∥b,a∥α,b∥β,则α∥β;
③若α∥β,a?α,则a∥β;
④若a∥α,a∥β,则α∥β
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知各项均为正数的等比数列{an}满足a1•a5=16,a2=2,则公比q=(  )
A.4B.$\frac{5}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案