精英家教网 > 高中数学 > 题目详情
16.函数y=4sin(ωx+$\frac{π}{4}$)cos(ωx-$\frac{π}{4}$)-2sin(ωx-$\frac{π}{4}$)•cos(ωx+$\frac{π}{4}$)(ω>0)的图象与直线y=3在y轴右侧的交点按横坐标从小到大依次记为P1,P2,P3,P4…,且|P3P5|=$\frac{π}{2}$,则此函数的递增区间为(  )
A.[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$](k∈Z)B.[$\frac{kπ}{2}$-$\frac{π}{8}$,$\frac{kπ}{2}$+$\frac{π}{8}$](k∈Z)
C.[kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$](k∈Z)D.[$\frac{kπ}{2}$,$\frac{kπ}{2}$+$\frac{π}{4}$](k∈Z)

分析 利用两角差的正弦函数、二倍角的余弦化简函数的表达式为:y=sin2ωx+3,通过题意,求出周期,确定ω,然后求出函数的单调增区间.

解答 解:函数y=4sin(ωx+$\frac{π}{4}$)cos(ωx-$\frac{π}{4}$)-2sin(ωx-$\frac{π}{4}$)cos(ωx+$\frac{π}{4}$)=2sin(ωx+$\frac{π}{4}$)cos(ωx-$\frac{π}{4}$)+2=2cos2(ωx-$\frac{π}{4}$)-1+3=cos(2ωx-$\frac{π}{2}$)+3=sin2ωx+3;
函数图象与直线y=3在y轴右侧的交点横坐标从小到大依次为p1,p2,…且|P3P5|=$\frac{π}{2}$,所以T=$\frac{π}{2}$,所以ω=4,函数为y=sin4x+3;
因为 2kπ-$\frac{π}{2}$≤4x≤2kπ+$\frac{π}{2}$(k∈z),
所以 x∈[$\frac{kπ}{2}$-$\frac{π}{8}$,$\frac{kπ}{2}$+$\frac{π}{8}$](k∈z)就是函数的单调增区间.
故选:B.

点评 本题是基础题,考查三角函数的化简解析式的求法,函数的单调增区间的求法,考查计算能力,逻辑推理能力,常考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=2x3+(4+$\frac{m}{2}$)x2-8x-16,对于任意的t∈[1,2],函数f(x)在区间(t,3)上不单调,则实数m的取值范围是(  )
A.(-$\frac{70}{3}$,+∞)B.(16,+∞)C.(-$\frac{70}{3}$,16)D.(-$\frac{70}{4}$,-16)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等差数列{an}中,a1=3,a17=35,则公差d=(  )
A.0B.-2C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,在正方体ABCD-A1B1C1D1中,E、F分别是棱DD1、C1D1的中点.
(1)求直线BE和平面ABB1A1所成角θ的正弦值;
(2)证明:B1F∥平面A1BE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知动点P(x,y)到直线x=4的距离是它到点Q(1,0)的距离的2倍
(1)求动点P的轨迹D的方程;
(2)若点A是曲线D与x轴负半轴的交点,C是曲线上的另一点,直线AC的垂直平分线是l,直线l与y轴的交点是N(0,y0),且满足NA⊥NC,求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,角A,B,C的对边分别为a,b,c,点M(b,a),O为坐标原点,若直线OM与直线l:xsinB+y(sinB-sinA)+(a-c)sinC-asinB=0垂直,垂足为M,则$\frac{c}{a}$=$\frac{1+\sqrt{13}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知正项等差数列{an}的前n项和为Sn,若a1+a2+a3=12,且a22=2a1•(a3+1).
(1)求{an}的通项公式;
(2)设b1+b2+…+bn=n•an,求bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知点H(0,-2),椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,F是椭圆E的右焦点,直线HF的斜率为$\frac{{2\sqrt{3}}}{3}$.
(I)求椭圆E的方程;
(Ⅱ)点A为椭圆E的右顶点,过B(1,0)作直线l与椭圆E相交于S,T两点,直线AS,AT与直线x=3分别交于不同的两点M,N,求|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足,an+1+an=2n.
(1)当a1=$\frac{1}{2}$时,求数列{an}的前n项和Sn
(2)若对任意n∈N*,都有$\frac{{{a}_{n}}^{2}+{{a}_{n+1}}^{2}}{{a}_{n}+{a}_{n+1}}$≥4成立,求a1的取值范围.

查看答案和解析>>

同步练习册答案