| A. | [2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$](k∈Z) | B. | [$\frac{kπ}{2}$-$\frac{π}{8}$,$\frac{kπ}{2}$+$\frac{π}{8}$](k∈Z) | ||
| C. | [kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$](k∈Z) | D. | [$\frac{kπ}{2}$,$\frac{kπ}{2}$+$\frac{π}{4}$](k∈Z) |
分析 利用两角差的正弦函数、二倍角的余弦化简函数的表达式为:y=sin2ωx+3,通过题意,求出周期,确定ω,然后求出函数的单调增区间.
解答 解:函数y=4sin(ωx+$\frac{π}{4}$)cos(ωx-$\frac{π}{4}$)-2sin(ωx-$\frac{π}{4}$)cos(ωx+$\frac{π}{4}$)=2sin(ωx+$\frac{π}{4}$)cos(ωx-$\frac{π}{4}$)+2=2cos2(ωx-$\frac{π}{4}$)-1+3=cos(2ωx-$\frac{π}{2}$)+3=sin2ωx+3;
函数图象与直线y=3在y轴右侧的交点横坐标从小到大依次为p1,p2,…且|P3P5|=$\frac{π}{2}$,所以T=$\frac{π}{2}$,所以ω=4,函数为y=sin4x+3;
因为 2kπ-$\frac{π}{2}$≤4x≤2kπ+$\frac{π}{2}$(k∈z),
所以 x∈[$\frac{kπ}{2}$-$\frac{π}{8}$,$\frac{kπ}{2}$+$\frac{π}{8}$](k∈z)就是函数的单调增区间.
故选:B.
点评 本题是基础题,考查三角函数的化简解析式的求法,函数的单调增区间的求法,考查计算能力,逻辑推理能力,常考题型.
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{70}{3}$,+∞) | B. | (16,+∞) | C. | (-$\frac{70}{3}$,16) | D. | (-$\frac{70}{4}$,-16) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com