精英家教网 > 高中数学 > 题目详情
9.从2,3,4中任取两个数,其中一个作为对数的底数,另一个作为对数的真数,则对数值大于1的概率是$\frac{1}{2}$.

分析 求出所有的基本事件的个数,再求出满足条件的事件的个数,求出满足条件的概率即可.

解答 解:所有可能的结果是:${A}_{3}^{2}$=6,
当2是底数时,真数可以是3,4,
当3是底数时,真数可以是4,
共有3种可能,
故满足条件的概率p=$\frac{3}{6}$=$\frac{1}{2}$,
故答案为:$\frac{1}{2}$.

点评 本题考查了古典概型的概率求值问题,考查对数的运算性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列函数中,与函数f(x)=$\frac{{e}^{x}-{e}^{-x}}{3}$的奇偶性、单调性都相同的是(  )
A.f(x)=x-1B.f(x)=x2C.f(x)=x${\;}^{\frac{1}{2}}$D.f(x)=x3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若变量x,y满足不等式组$\left\{\begin{array}{l}x≤1\\ x≥y\\ x+y+2≥0\end{array}\right.$,则(x,y)的整数解有(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.经过直线l1:x+y-1=0与直线l2:2x-3y+8=0的交点M,且与直线2x+y+5=0平行的直线l的方程为2x+y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.为了确定学生的答卷时间,需要确定回答每道题所用的时间,为此进行了5次实验,根据收集到的数据,如表所示:
题数x(道)23456
所需要时间y(分钟)367811
由最小二乘法求得回归方程y=1.8x+a,则a的值为-0.2.
(参考公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=7}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设直线l与曲线C1:y=ex和曲线C2:y=-$\frac{1}{{e}^{x}}$均相切,切点分别为A(x1,y1),B(x2,y2),则y1y2=-e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若x,y满足约束条件$\left\{\begin{array}{l}x≥1\\ x+y-3≤0\\ x-y-3≤0\end{array}\right.$,设x2+y2+4x的最大值点为A,则经过点A和B(-2,-3)的直线方程为3x-5y-9=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若f(x)=x2+2(a-1)x+2在区间(-∞,4)上是减函数,则实数a的取值范围是(  )
A.a<-3B.a>-3C.a≤-3D.a≥-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an},{bn}中,a1=1,an+1-(n+1)an=0,${b_1}^3+{b_2}^3+…+{b_n}^3={({{b_1}+{b_2}+…+{b_n}})^2}$且bn>0,n∈N*.记n的阶乘n(n-1)(n-2)…3•2•1=n!
(1)求数列{an},{bn}的通项公式;
(2)若${c_n}=\frac{b_n}{{a{\;}_{n+1}}}$,求证:${c_1}+{c_2}+…+{c_n}≥\frac{n}{n+1}{\;}_{\;}{\;}_{\;}(n∈{N^*})$.

查看答案和解析>>

同步练习册答案