精英家教网 > 高中数学 > 题目详情
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验如下:
零件的个数x(个) 2 3 4 5
加工的时间y(小时) 2.5 3 4 4.5
(1)在给定坐标系中画出表中数据的散点图;
(2)求y关于x的线性回归方程
y
=
b
x+
a

(3)试预测加工10个零件需要多少时间?(
b
=
n
i-1
xiyi-n
.
x
.
y
n
i-1
x
2
i
-n(
.
x
)2
a
=
.
y
-
b
.
x
考点:回归分析的初步应用
专题:
分析:(1)利用表格中的数据先作出散点图;
(2)求解均值a,b的值,从而得到线性回归方程;
(3)利用回归方程将x=10代入方程中,得到y的预测值.
解答: 解:(1)散点图,如图所示.       
(2)
.
x
=
2+3+4+5
4
=3.5,
.
y
=
2.5+3+4+4.5
4
=3.5,
4
i=1
xiyi
=52.5,
4
i=1
xi2=54

b
=
52.5-4×3.5×3.5
54-4×3.52
=0.7,
a
=3.5-0.7×3.5=1.05,
∴回归直线方程:
y
=0.7x+1.05

(3)当
y
=0.7×10+1.05=8.05预测加工10个零件需要8.05小时.
点评:本题考查回归分析的初步应用,考查学生的计算能力,正确运用公式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=lg
2+x
2-x
,则f(
x
2
)的定义域为(  )
A、(-4,0)U(0,4)
B、(-4,4)
C、(-2,-1)U(1,2)
D、(-4,-2)U(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=cos(x+
π
4
),则(  )
A、f(-1)>f(0)>f(1)
B、f(-1)>f(1)>f(0)
C、f(1)>f(-1)>f(0)
D、f(1)>f(0)>f(-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在(0,+∞)上的函数满足f(
x1
x2
)=f(x1)-f(x2),且当x>1时,f(x)<0,求f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
x
+
1
3x2
n的第五项的二项式系数与第三项的二项式系数的比是14:3,
(1)求n.
(2)求展开式中常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:

求以椭圆
x2
25
+
y2
9
=1的长轴端点为焦点且经过点P(5,
9
4
)的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设平面向量
a
=(cosx,sinx),
b
=(
3
2
1
2
),函数f(x)=
a
b
+1
(1)求f(
π
2
)的值;
(2)当f(α)=
9
5
,且
π
6
<α<
3
时,求sin(2α+
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设存在复数z同时满足下列条件:
(1)复数z在复平面内对应的点位于第二象限;
(2)z•
z
+2iz=8+ai(a∈R),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足,a1>0,5a8=8a13,则前n项和Sn取最大值时,n的值为
 

查看答案和解析>>

同步练习册答案