精英家教网 > 高中数学 > 题目详情
1.已知f(x)=|x+1|+|x-3|,g(x)=$\sqrt{7x+14}$+$\sqrt{6-x}$.
(1)求不等式f(x)≥8的解集;
(2)若存在实数x0,使得g(x0)>log${\;}_{\sqrt{2}}$(3t+1)成立,求实数t的取值范围.

分析 (1)利用绝对值的几何意义,分类讨论,即可解不等式;
(2)求出g(x)=$\sqrt{7x+14}$+$\sqrt{6-x}$的最大值,利用g(x)max>log${\;}_{\sqrt{2}}$(3t+1)成立,求实数t的取值范围.

解答 解:(1)不等式f(x)≥8,即不等式|x+1|+|x-3|≥8,
x<-1时,-x-1-x+3≥8,解得x≤-3,∴x≤-3;
-1≤x≤3时,x+1-x+3≥8,不成立;
x>3时,x+1+x-3≥8,解得x≥5,∴x≥5;
∴不等式f(x)≥8的解集为{x|x≤-3或x≥5};
(2)设$\sqrt{7x+14}$=m,$\sqrt{6-x}$=n,则m2+7n2=56(m≥0,n≥0),
设m=$\sqrt{56}$cosα,n=2$\sqrt{2}$sinα(0≤α≤90°),
∴m+n=2$\sqrt{14}$cosα+2$\sqrt{2}$sinα=8sin(α+θ),
∴(m+n)max=8,
∵存在实数x0,使得g(x0)>log${\;}_{\sqrt{2}}$(3t+1)成立,
∴8>log${\;}_{\sqrt{2}}$(3t+1),
∴0<3t+1<$(\sqrt{2})^{8}$,
∴-$\frac{1}{3}$<t<5.

点评 本题考查不等式的解法,考查分类讨论的数学思想,考查函数的最值,正确求出函数的最大值是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知f(x)=$\frac{3}{4}{e^{x+\frac{1}{2}}}$,g(x)=ax3-x2-x+b(a,b∈R,a≠0),g(x)的图象C在x=-$\frac{1}{2}$处的切线方程是y=$\frac{3}{4}x+\frac{9}{8}$.
(1)若求a,b的值,并证明:当x∈(-∞,2]时,g(x)的图象C上任意一点都在切线y=$\frac{3}{4}x+\frac{9}{8}$上或在其下方;
(2)求证:当x∈(-∞,2]时,f(x)≥g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,已知2B=A+C,b2=ac,则B-A=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=a-$\frac{1}{x}$-lnx,g(x)=ex-ex+1.
(Ⅰ)若a=2,求函数f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若f(x)=0恰有一个解,求a的值;
(Ⅲ)若g(x)≥f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)满足$f(x)+1=\frac{1}{f(x+1)}$,当x∈[0,1]时,f(x)=x,若在区间(-1,1]上,g(x)=f(x)-mx-2m有两个零点,则实数m的取值范围是(  )
A.$0<m≤\frac{1}{3}$B.$0<m<\frac{1}{2}$C.$\frac{1}{2}<m≤1$D.$\frac{1}{3}<m<1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知关于x的方程4x2+4(k+2)x+(2k2+2k+1)=0的两实根为α,β,则(α+1)(β+1)的取值范围是[-$\frac{7}{8}$,$\frac{9}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的$\sqrt{2}$倍,P为侧棱SD上的点.
(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某大型企业人力资源部为了研究企业员工工作态度和对待企业改革态度的关系,经过调查得到如下列联表:
态度积极支持企业改革不太支持企业改革总计
工作积极544094
工作一般326395
总计86103189
根据列联表的独立性检验,能否在犯错误的概率不超过0.005的前提下认为工作态度与对待企业改革态度之间有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow a$=($\sqrt{3}$cosωx,-1),$\overrightarrow b$=(sinωx,cos2ωx+$\frac{1}{2}$),(ω>0),函数f(x)=$\overrightarrow a$•$\overrightarrow b$的最小正周期为π.
(I)求函数f(x)的单调递增区间;
(II)设△ABC的三个内角A,B,C所对的边分别为a,b,c,若c=$\sqrt{3}$,f(C)=0,而且满足sinB=2sinA,求△ABC的面积.

查看答案和解析>>

同步练习册答案