精英家教网 > 高中数学 > 题目详情
7.如图,AB是⊙O的直径,PA垂直于⊙O所在平面,C是圆周上不同于A,B两点的任意一点,且AB=2,$PA=BC=\sqrt{3}$,则二面角A-BC-P的大小为(  )
A.30°B.45°C.60°D.90°

分析 以A为原点,在平面ABC内过A作AC的垂线为x轴,AC为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BC-P的大小.

解答 解:∵AB是⊙O的直径,PA垂直于⊙O所在平面,C是圆周上不同于A,B两点的任意一点,
且AB=2,$PA=BC=\sqrt{3}$,
∴AC⊥BC,AC=$\sqrt{A{B}^{2}-B{C}^{2}}$=$\sqrt{4-3}$=1,
以A为原点,在平面ABC内过A作AC的垂线为x轴,AC为y轴,AP为z轴,建立空间直角坐标系,
P(0,0,$\sqrt{3}$),B($\sqrt{3}$,1,0),C(0,1,0),
$\overrightarrow{PB}$=($\sqrt{3},1$,-$\sqrt{3}$),$\overrightarrow{PC}$=(0,1,-$\sqrt{3}$),
设平面PBC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PB}=\sqrt{3}x+y-\sqrt{3}z=0}\\{\overrightarrow{n}•\overrightarrow{PC}=y-\sqrt{3}z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(0,$\sqrt{3}$,1),
平面ABC的法向量$\overrightarrow{m}$=(0,0,1),
设二面角A-BC-P的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{2}$,∴θ=60°,
∴二面角A-BC-P的大小为60°,
故选:C.

点评 本题考查二面角的大小的求法,涉及到空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设函数f(x0)=aexlnx+$\frac{b{e}^{x-1}}{x}$,曲线y=f(x)在点(1,f(1)处的切线为y=e(x-1)+2.
(Ⅰ)求a,b; 
(Ⅱ)证明:f(x)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ax2-bx+lnx,(a,b∈R).
(1)若a=1,b=3,求函数f(x)的单调递增区间;
(2)若b=0时,不等式f(x)≤0在[1,+∞)上恒成立,求实数a的取值范围;
(3)当a=1,b>$\frac{9}{2}$时,记函数f(x)的导函数f'(x)的两个零点是x1,x2(x1<x2),求证:f(x1)-f(x2)>$\frac{63}{16}$-3ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$cos(\frac{π}{3}+α)=\frac{1}{3}$,则$sin(\frac{5}{6}π+α)$=(  )
A..$\frac{1}{3}$B.$-\frac{1}{3}$C..$\frac{{2\sqrt{2}}}{3}$D..$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow a•\overrightarrow b$,则“$\overrightarrow a∥\overrightarrow b$”是“$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|+|{\overrightarrow b}|$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$cos({\frac{π}{4}-θ})=\frac{{\sqrt{2}}}{10}$,且θ∈(0,π).
(1)求$sin({\frac{π}{4}+θ})$的值;
(2)求sin4θ-cos4θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.对大于1的自然数m的三次幂可用奇数进行以下方式的“分裂”:23$\left\{\begin{array}{l}{3}\\{5}\end{array}\right.$,33$\left\{\begin{array}{l}{7}\\{9}\\{11}\end{array}\right.$,43$\left\{\begin{array}{l}{13}\\{15}\\{17}\\{19}\end{array}\right.$…仿此,若m3的“分裂”数中有一个是47,则m的值为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某商品在销售过程中投入的销售时间x与销售额y的统计数据如下表:
销售时间x(月)12345
销售额y(万元)0.40.50.60.60.4
用线性回归分析的方法预测该商品6月份的销售额.
(参考公式:$\widehat{b}$=$\frac{{\sum_{i=1}^n{\;}({x_i}-_x^-)({y_i}-_y^-)}}{{\sum_{i=1}^n{\;}{{({x_i}-_x^-)}^2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$表示样本平均值)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.连接直角三角形的直角顶点与斜边的两个三等分点,所得线段的长分别为sinα和cosα$(0<α<\frac{π}{2})$,则斜边长是$\frac{{3\sqrt{5}}}{5}$.

查看答案和解析>>

同步练习册答案