精英家教网 > 高中数学 > 题目详情
15.以抛物线y=$\frac{1}{4}$x2的焦点为圆心,以焦点到准线的距离为半径的圆被双曲线$\frac{x^2}{4}$-y2=1的渐近线截得的弦长为$\frac{8\sqrt{5}}{5}$.

分析 由抛物线方程求出抛物线的焦点坐标,得到圆心坐标和半径,由双曲线方程求出其渐近线方程,再由点到直线距离求得圆心到渐近线的距离,利用勾股定理求得弦长.

解答 解:由y=$\frac{1}{4}$x2,得x2=4y,∴F(0,1),则所求圆的方程为x2+(y-1)2=4,
由双曲线$\frac{x^2}{4}$-y2=1,得其渐近线方程为y=$±\frac{1}{2}x$,
不妨取y=$\frac{1}{2}x$,即x-2y=0,
则F(0,1)到直线x-2y=0的距离为d=$\frac{|-2|}{\sqrt{5}}=\frac{2\sqrt{5}}{5}$,
∴弦长为$2\sqrt{4-(\frac{2\sqrt{5}}{5})^{2}}=\frac{8\sqrt{5}}{5}$.
故答案为:$\frac{8}{5}\sqrt{5}$.

点评 本题考查抛物线和双曲线的简单性质,考查了点到直线的距离公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.如图,在长方体ABCD-A1B1C1D1中,AB=5,BC=4,AA1=3,沿该长方体对角面ABC1D1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为114.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=cos$\frac{π}{6}x-\sqrt{3}sin\frac{π}{6}$x(0≤x≤5)的图象过点B(4,m),
(Ⅰ)若角α的顶点为坐标原点,始边与x轴的非负半轴重合,其终边过点B,求sin2α的值;
(Ⅱ)求函数y=f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|-1≤x≤1},B={x|-1≤x≤a},且(A∪B)⊆(A∩B),则实数a=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,四棱锥P-ABCD的底面ABCD是直角梯形,BC∥AD,AB⊥AD,AB=BC=$\frac{1}{2}$AD,PA⊥底面ABCD,过BC的平面交PD于M,交PA于N(M与D不重合).
(1)求证:MN∥BC;
(2)如果BM⊥AC,求此时$\frac{PM}{PD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.知a1=1,an+1=$\frac{a_n}{{3{a_n}+1}}$,则数列{an}的通项为an=(  )
A.$\frac{1}{2n-1}$B.2n-1C.$\frac{1}{3n-2}$D.3n-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow b|=3$,$\overrightarrow a$在$\overrightarrow b$方向上的投影是$\frac{3}{2}$,则$\overrightarrow a•\overrightarrow b$=$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=lnx+ax有大于1的极值点,则a的取值范围是(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知离心率为$\frac{\sqrt{3}}{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点M(2,1),O为坐标原点,平行于OM的直线l交椭圆C于不同的两点A,B.
(1)求椭圆C的标准方程;
(2)求△AOB面积的最大值;
(3)证明:直线MA、MB与x轴围成一个等腰三角形.

查看答案和解析>>

同步练习册答案