精英家教网 > 高中数学 > 题目详情
3.已知集合A={x|-1≤x≤1},B={x|-1≤x≤a},且(A∪B)⊆(A∩B),则实数a=(  )
A.0B.1C.2D.3

分析 由已知中(A∪B)⊆(A∩B),可得:(A∪B)=(A∩B),进而得到A=B,求出实数a的值.

解答 解:∵集合A={x|-1≤x≤1},B={x|-1≤x≤a},且(A∪B)⊆(A∩B),
∴(A∪B)=(A∩B),
∴A=B,
∴a=1,
故选:B

点评 本题考查的知识点是集合的交集,并集运算,其中根据已知得到:(A∪B)=(A∩B),进而得到A=B,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.在△ABC中,角A,B,C的对边分别为a,b,c,sinA,sinB,sinC依次成等比数列,c=2a且$\overrightarrow{BA}$•$\overrightarrow{BC}$=18,则△ABC的面积是3$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某商品一直打7折出售,利润率为47%,购物节期间,该商品恢复了原价,并参加了“买一件送同样一件”的活动,则此时的利润率为5%.(注:利润率=(销售价格-成本)÷成本)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)=cos2x-$\sqrt{3}$sin2x,把y=f(x)的图象向左平移φ(φ>0)个单位后,恰好得到函数g(x)=-cos2x-$\sqrt{3}$sin2x的图象,则φ的值可以为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某多面件的三视图,该多面体的体积为(  )
A.40cm3B.50cm3C.60cm3D.80cm3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.5本不同的数,全部分给四个学生,每个学生至少1本,不同分法的种数为240.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.以抛物线y=$\frac{1}{4}$x2的焦点为圆心,以焦点到准线的距离为半径的圆被双曲线$\frac{x^2}{4}$-y2=1的渐近线截得的弦长为$\frac{8\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若不等式组$\left\{\begin{array}{l}x-y+2≥0\\ x-5y+10≤0\\ x+y-8≤0\end{array}\right.$所表示的平面区域存在点(x0,y0)使x0+ay0+2≤0成立,则实数a的取值范围是(  )
A.a>1B.a>-1C.a≤1D.a≤-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,在平面直角坐标系xoy中,圆x2+y2=r2(r>0)内切于正方形ABCD,任取圆上一点P,若$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),则$\frac{1}{4}$是m2,n2的等差中项,现有一椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)内切于矩形ABCD,任取椭圆上一点P,若$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),则m2,n2的等差中项为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

同步练习册答案