精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\frac{1}{4}{({x+1})^2}$.
(1)证明:f(x)+|f(x)-2|≥2;
(2)当x≠-1时,求y=$\frac{1}{4f(x)}+{[{f(x)}]^2}$的最小值.

分析 (1)通过绝对值不等式放缩可得结论;
(2)通过当x≠-1时f(x)=$\frac{1}{4}{({x+1})^2}$>0,利用基本不等式的推广放缩可得结论.

解答 (1)证明:因为f(x)=$\frac{1}{4}{({x+1})^2}$≥0,
所以f(x)+|f(x)-2|=|f(x)|+|2-f(x)|≥|f(x)+2-f(x)|=2,
当且仅当f(x)[2-f(x)]≥0即0≤f(x)≤2即-1-2$\sqrt{2}$≤x≤-1+2$\sqrt{2}$时取等号;
(2)解:当x≠-1时,f(x)=$\frac{1}{4}{({x+1})^2}$>0,
所以y=$\frac{1}{4f(x)}+{[{f(x)}]^2}$=$\frac{1}{8f(x)}$+$\frac{1}{8f(x)}$+[f(x)]2≥3•$\root{3}{\frac{1}{8f(x)}•\frac{1}{8f(x)}•[f(x)]^{2}}$=$\frac{3}{4}$,
当且仅当$\frac{1}{8f(x)}$=$\frac{1}{8f(x)}$=[f(x)]2即x=-1±$\sqrt{2}$时取等号,
所以所求最小值为$\frac{3}{4}$.

点评 本题考查函数的最值及其几何意义,考查绝对值不等式,考查基本不等式,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.(1)证明:如果a>0,b>0,那么$\frac{a}{{\sqrt{b}}}+\frac{b}{{\sqrt{a}}}≥\sqrt{a}+\sqrt{b}$;
(2)已知2x+3y+4z=10,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设${({1+x+{x^2}})^n}={a_0}+{a_1}x+{a_1}{x^2}+…+{a_{2n}}{x^{2n}}$.
(1)求a0的值;
(2)求$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}$的值;
(3)求a2+a4+…+a2n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2+2ax+2lnx(a∈R),g(x)=2ex+3x2(e为自然对数的底数).
(Ⅰ)讨论函数f(x)的极值点的个数;
(Ⅱ)若函数y=f(x)的图象与函数y=g(x)的图象有两个不同的交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=$\frac{x}{lnx}$-ax,a∈R
(1)若函数f(x)存在单调递增区间,求a的取值范围;
(2)若存在x∈[e,e2],使得不等式f(x)≤$\frac{1}{4}$成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知AB为半圆O的直径,点C为半圆上一点,过点C作半圆的切线CD,过点B作BD⊥CD于点D.求证:BC2=BA•BD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={1,2,3,5},B={x|x-2>0},那么集合A∩B等于(  )
A.{1}B.{3}C.{1,3}D.{3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,正三角形ABE与菱形ABCD所在的平面互相垂直,AB=2,∠ABC=60°,M是AB的中点.
(I)求证:EM⊥AD;
(II)求二面角A-BE-C的余弦值;
(III)在线段EC上是否存在点P,使得直线AP与平面ABE所成的角为45°,若存在,求出$\frac{EP}{EC}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等边三角形PAB的边长为4,四边形ABCD为正方形,平面PAB⊥平面ABCD,E,F,G,H分别是线段AB,CD,PD,PC上的点.

(1)如图①,若G为线段PD的中点,BE=DF=1,证明:PB∥平面EFG;
(2)如图②,若E,F分别是线段AB,CD的中点,DG=3GP,GH=$\frac{1}{3}$HP,求二面角H-EF-G的余弦值.

查看答案和解析>>

同步练习册答案