精英家教网 > 高中数学 > 题目详情
5.设${({1+x+{x^2}})^n}={a_0}+{a_1}x+{a_1}{x^2}+…+{a_{2n}}{x^{2n}}$.
(1)求a0的值;
(2)求$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}$的值;
(3)求a2+a4+…+a2n的值.

分析 (1)令x=0,可得a0
(2)令x=$\frac{1}{2}$,可得1+$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}$=$(\frac{7}{4})^{n}$,即可得出.
(3)由${({1+x+{x^2}})^n}={a_0}+{a_1}x+{a_1}{x^2}+…+{a_{2n}}{x^{2n}}$.令x=1,可得:a0+a1+a2+…+a2n=3n,令x=-1,可得a0-a1+a2-…+a2n=1.相加即可得出.

解答 解:(1)令x=0,可得a0=1.
(2)令x=$\frac{1}{2}$,可得1+$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}$=($\frac{7}{4}$)n
∴$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}$=$(\frac{7}{4})^{n}$-1.
(3)由${({1+x+{x^2}})^n}={a_0}+{a_1}x+{a_1}{x^2}+…+{a_{2n}}{x^{2n}}$.
令x=1,可得:a0+a1+a2+…+a2n=3n
令x=-1,可得a0-a1+a2-…+a2n=1.
相加可得:a0+a2+a4+…+a2n=$\frac{1}{2}$[3n+1].
∴a2+a4+…+a2n=$\frac{1}{2}$[3n+1]-1=$\frac{{3}^{n}-1}{2}$.

点评 本题考查了二项式定理的应用、方程思想方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=$\sqrt{5}$(a2-b2-c2).
(Ⅰ)求cosA的值;
(Ⅱ)求sin(2B-A)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=x3+ax2+bx有两个极值点x1、x2,且x1<x2,若x1+2x0=3x2,函数g(x)=f(x)-f(x0),则g(x)(  )
A.恰有一个零点B.恰有两个零点C.恰有三个零点D.至多两个零点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数$f(x)=\frac{4x}{x+4}{,_{\;}}且{x_1}=1,{x_{n+1}}=f({x_n})$,则x2017=$\frac{1}{505}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x(m+e-x),其中e为自然对数的底数,曲线y=f(x)上存在不同的两点,使得曲线在这两点处的切线都与y轴垂直,则实数m的取值范围是(  )
A.(0,e-2B.(e-2,+∞)C.(0,e2D.(e2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某公路段在某一时刻内监测到的车速频率分布直方图如图所示.
(1)求纵坐标中h的值及第三个小长方形的面积;
(2)求平均车速$\overline{v}$的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2+$\frac{1}{x}$,x∈(0,1].
(1)求f(x)的极值点;
(2)证明:f(x)>$\sqrt{x}$+$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{4}{({x+1})^2}$.
(1)证明:f(x)+|f(x)-2|≥2;
(2)当x≠-1时,求y=$\frac{1}{4f(x)}+{[{f(x)}]^2}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题p:x2+2x-3>0;命题q:$\frac{1}{3-x}$>1,若“(¬q)∧p”为真,求x的取值范围.

查看答案和解析>>

同步练习册答案