精英家教网 > 高中数学 > 题目详情
15.已知命题p:x2+2x-3>0;命题q:$\frac{1}{3-x}$>1,若“(¬q)∧p”为真,求x的取值范围.

分析 根据不等式的解法求出命题的等价条件,结合复合命题真假关系进行求解即可.

解答 解:由x2+2x-3>0得x>1或x<-3,即p:x>1或x<-3,
由$\frac{1}{3-x}$>1得$\left\{\begin{array}{l}{3-x>0}\\{1>3-x}\end{array}\right.$,即$\left\{\begin{array}{l}{x<3}\\{x>2}\end{array}\right.$,则2<x<3,
即q:2<x<3,¬q:x≥3或x≤2,
若“(¬q)∧p”为真,
则$\left\{\begin{array}{l}{x>1或x<-3}\\{x≥3或x≤2}\end{array}\right.$,得x≥3或1<x≤2或x<-3,
即x的取值范围是x≥3或1<x≤2或x<-3.

点评 本题主要考查复合命题真假关系的判断,根据不等式的解法求出命题的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设${({1+x+{x^2}})^n}={a_0}+{a_1}x+{a_1}{x^2}+…+{a_{2n}}{x^{2n}}$.
(1)求a0的值;
(2)求$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}$的值;
(3)求a2+a4+…+a2n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={1,2,3,5},B={x|x-2>0},那么集合A∩B等于(  )
A.{1}B.{3}C.{1,3}D.{3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,正三角形ABE与菱形ABCD所在的平面互相垂直,AB=2,∠ABC=60°,M是AB的中点.
(I)求证:EM⊥AD;
(II)求二面角A-BE-C的余弦值;
(III)在线段EC上是否存在点P,使得直线AP与平面ABE所成的角为45°,若存在,求出$\frac{EP}{EC}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题p:“?x0∈R,e${\;}^{{x}_{0}}$-x0-1≤0”,则¬p为(  )
A.?x0∈R,e${\;}^{{x}_{0}}$-x0-1≥0B.?x0∈R,e${\;}^{{x}_{0}}$-x0-1>0
C.?x∈R,ex-x-1>0D.?x∈R,ex-x-1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知平面区域D={(x,y)|$\left\{\begin{array}{l}{x-4y+3≤0}\\{3x+5y-25≤0}\\{x≥1}\end{array}\right.$},Z=$\frac{y}{x+2}$.若命题“?(x,y)∈D,Z≥m”为真命题,则实数m的最大值为(  )
A.$\frac{22}{15}$B.$\frac{2}{7}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设全集U=R,集合A={x|x≥2},B={x|0≤x<6},则集合(∁UA)∩B=(  )
A.{x|0<x<2}B.{x|0<x≤2}C.{x|0≤x<2}D.{x|0≤x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等边三角形PAB的边长为4,四边形ABCD为正方形,平面PAB⊥平面ABCD,E,F,G,H分别是线段AB,CD,PD,PC上的点.

(1)如图①,若G为线段PD的中点,BE=DF=1,证明:PB∥平面EFG;
(2)如图②,若E,F分别是线段AB,CD的中点,DG=3GP,GH=$\frac{1}{3}$HP,求二面角H-EF-G的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.当x=$\frac{π}{6}$时,函数f(x)=cos2x+sinx(|x|≤$\frac{π}{4}$)取最大值.

查看答案和解析>>

同步练习册答案