精英家教网 > 高中数学 > 题目详情
5.当x=$\frac{π}{6}$时,函数f(x)=cos2x+sinx(|x|≤$\frac{π}{4}$)取最大值.

分析 把函数f(x)画出关于sinx的二次函数,利用配方法求出sinx=$\frac{1}{2}$时f(x)取得最大值.

解答 解:函数f(x)=cos2x+sinx
=1-sin2x+sinx
=-${(sinx-\frac{1}{2})}^{2}$+$\frac{5}{4}$,
∵|x|≤$\frac{π}{4}$,
∴-$\frac{π}{4}$≤x≤$\frac{π}{4}$,
∴当sinx=$\frac{1}{2}$,即x=$\frac{π}{6}$时f(x)取得最大值$\frac{5}{4}$.
故答案为:$\frac{π}{6}$.

点评 本题考查了正弦函数的定义域和值域的应用问题,也考查了二次函数在闭区间上的最值问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知命题p:x2+2x-3>0;命题q:$\frac{1}{3-x}$>1,若“(¬q)∧p”为真,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对于两个不重合的平面α与β,给定下列条件,其中可以判定α与β平行的条件是(  )
A.α内有不共线的三点到β的距离相等;
B.a内存在直线平行于平面β
C.存在平面γ,使得α⊥γ,β⊥γ
D.存在异面直线l,m使得l∥α,l∥β,m∥α,m∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|x2+x-6<0},B={-2,-1,0,1,2},那么A∩B=(  )
A.{-2,-1,0,1}B.{-2,-1,1}C.{-1,1,2}D.{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若变量x,y满足约束条件$\left\{\begin{array}{l}x+y≥1\\ x-y≥-1\\ 3x-y≤3\end{array}\right.$,则$z=\frac{y+2}{x+1}$的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.前不久,我市各街头开始出现“高庶葫芦岛”共享单车,满足了市民的出行需要和节能环保的要求,解决了最后一公里的出行难题,市运营中心为了对共享单车进行更好的监管,随机抽取了20位市民对共享单车的情况进行了问卷调查,并根据其满足度评分值制作了茎叶图如下:

(1)分别计算男性打分的中位数和女性打分的平均数;
(2)从打分在80分以下(不含80分)的市民中抽取3人,求有女性被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={-2,-1,0,1,2,3},B={y|y=|x|-3,x∈A},则A∩B=(  )
A.{-3,-2,-1,0}B.{-1,0,1,2}C.{-2,-1,0}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$|{\overrightarrow{OA}}|=2$,$|{\overrightarrow{OB}}|=2$,且向量$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为120°,又$|{\overrightarrow{PO}}|=\sqrt{3}$,则$\overrightarrow{AP}•\overrightarrow{BP}$的取值范围是$[{1-2\sqrt{3},1+2\sqrt{3}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设集合S={x|$\frac{x-3}{x-6}$≤0,x∈R},T={2,3,4,5,6},则S∩T={3,4,5}.

查看答案和解析>>

同步练习册答案