精英家教网 > 高中数学 > 题目详情
10.已知命题p:“?x0∈R,e${\;}^{{x}_{0}}$-x0-1≤0”,则¬p为(  )
A.?x0∈R,e${\;}^{{x}_{0}}$-x0-1≥0B.?x0∈R,e${\;}^{{x}_{0}}$-x0-1>0
C.?x∈R,ex-x-1>0D.?x∈R,ex-x-1≥0

分析 根据特称命题的否定是全称命题进行判断即可.

解答 解:命题是特称命题,则命题的否定是全称命题,
即¬p:?x∈R,ex-x-1>0,
故选:C

点评 本题主要考查含有量词的命题的否定,根据特称命题的否定是全称命题是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x(m+e-x),其中e为自然对数的底数,曲线y=f(x)上存在不同的两点,使得曲线在这两点处的切线都与y轴垂直,则实数m的取值范围是(  )
A.(0,e-2B.(e-2,+∞)C.(0,e2D.(e2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设A,B是非空集合,定义A*B={x|x∈A∪B且x∉A∩B},已知M={x|0≤x≤3},N={y|y≤1},则M*N=(  )
A.(1,3]B.(-∞,0)∪(1,3]C.(-∞,3]D.(-∞,0]∪[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=|cosx|•sinx,给出下列四个说法:
①$f(\frac{2014π}{3})=-\frac{{\sqrt{3}}}{4}$;
②函数f(x)的周期为π;
③f(x)在区间$[-\frac{π}{4},\frac{π}{4}]$上单调递增;
④f(x)的图象关于点$(-\frac{π}{2},0)$中心对称
其中正确说法的序号是(  )
A.②③B.①③C.①④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若复数z满足(1+i)z=|1-i|(i为复数单位),则 z的共轭复数为(  )
A.1+iB.1-iC.$\frac{{\sqrt{2}}}{2}-\frac{{\sqrt{2}}}{2}i$D.$\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{2}}}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题p:x2+2x-3>0;命题q:$\frac{1}{3-x}$>1,若“(¬q)∧p”为真,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.抛物线的顶点在原点,对称轴为y轴,抛物线上一点(x0,2)到焦点的距离为3,则抛物线方程为x2=4y.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线C:y2=2px(p>0)的焦点为F,A为C上位于第一象限的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D.
(1)若|FA|=|AD|,当点A的横坐标为$3+2\sqrt{2}$时,△ADF为等腰直角三角形,求C的方程;
(2)对于(1)中求出的抛物线C,若点$D({{x_0},0})({{x_0}≥\frac{1}{2}})$,记点B关于x轴的对称点为E,AE交x轴于点P,且AP⊥BP,求证:点P的坐标为(-x0,0),并求点P到直线AB的距离d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若变量x,y满足约束条件$\left\{\begin{array}{l}x+y≥1\\ x-y≥-1\\ 3x-y≤3\end{array}\right.$,则$z=\frac{y+2}{x+1}$的最大值为3.

查看答案和解析>>

同步练习册答案