精英家教网 > 高中数学 > 题目详情
11.如图,已知四边形ABCD是边长为1的正方形,AF⊥平面ABCD,CE⊥平面ABCD.
(Ⅰ)证明:BD⊥EF;
(Ⅱ)若AF=1,且二面角B-EF-C的大小为30°,求CE的长.

分析 (Ⅰ)通过题意可得四边形ACEF在同一平面内,利用线面垂直的判定定理及性质定理即得结论;
(Ⅱ)以点A为坐标原点,分别以AB、AD、AF所在直线为x、y、z轴建立空间直角坐标系A-xyz,通过平面BEF的一个法向量与平面CEF的一个法向量的夹角的余弦值的绝对值为$\frac{\sqrt{3}}{2}$,计算即得CE的长.

解答 (Ⅰ)证明:∵AF⊥平面ABCD,CE⊥平面ABCD,
∴AF∥CE,∴四边形ACEF在同一平面内,
∵AF⊥平面ABCD,∴AF⊥BD,
又∵ABCD为正方形,∴AC⊥BD,
∵AF∩AC=A,∴BD⊥平面ACEF,
∴BD⊥EF;
(Ⅱ)解:以点A为坐标原点,分别以AB、AD、AF所在直线为x、y、z轴建立空间直角坐标系A-xyz如图,
设CE=a,则B(1,0,0),F(0,0,1),E(1,1,a),
∴$\overrightarrow{BF}$=(-1,0,1),$\overrightarrow{BE}$=(0,1,a),
设平面BEF的一个法向量为$\overrightarrow{m}$=(x,y,1),
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BF}=0}\\{\overrightarrow{m}•\overrightarrow{BE}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{-x+1=0}\\{y+a=0}\end{array}\right.$,∴$\overrightarrow{m}$=(1,-a,1),
由(I)知$\overrightarrow{DB}$=(1,-1,0)是平面CEF的一个法向量,
∴|cos<$\overrightarrow{DB}$,$\overrightarrow{m}$>|=$\frac{|a+1|}{\sqrt{2}•\sqrt{{a}^{2}+2}}$=cos30°=$\frac{\sqrt{3}}{2}$,
∴a=2,即CE=2.

点评 本题考查空间中线线垂直的判定及性质,以及求二面角的三角函数值,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PA⊥底面ABCD,PA=AB,点E是PD的中点,作EF⊥PC交PC于F.
(Ⅰ)求证:PB∥平面EAC;
(Ⅱ)求证:PC⊥平面AEF;
(Ⅲ)求二面角A-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x=3是函数f(x)=alnx+x2-10x的一个极值点,则实数a=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在三棱锥S-ABC中,底面是边长为2的正三角形且SA=SB=2,SC=$\sqrt{3}$,则二面角S-AB-C的大小是(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是一个直角梯形,AB∥CD,∠ABC=90°,CD=3,BC=2,AB=A1B=5.
(1)试判断AB1与平面A1C1D是否平行,请说明理由;
(2)若A1A=A1D,点O在棱AB上,AO=2,cos∠ABA1=$\frac{3}{5}$,求CC1与平面OA1C1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,PA=PD=2,BC=$\frac{1}{2}$AD=1,CD=$\sqrt{3}$.
(1)求证:平面PQB⊥平面PAD;
(2)在棱PC上是否存在一点M,使二面角M-BQ-C为30°,若存在,确定M的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2-2x+$\frac{8}{3}$.
(1)求f(x)的单调递减区间,
(2)求f(x)在区间[-3,3]上的极大值和极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C的中心在坐标原点,左、右焦点分别为F1,F2,P为椭圆C上的动点,△PF1F2的面积最大值为$\sqrt{3}$,以原点为圆心,椭圆短半轴长为半径的圆与直线3x-4y+5=0相切.
(1)求椭圆C的方程;
(2)若直线l过定点(1,0)且与椭圆C交于A,B两点,点M是椭圆C的右顶点,直线AM与直线BM分别与y轴交于P,Q两点,试问以线段PQ为直径的圆是否过x轴上的定点?若是,求出定点坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.定义非空集合A的真子集的真子集为A的“孙集”,则集合{2,4,6,8,10}的“孙集”个数为26.

查看答案和解析>>

同步练习册答案