精英家教网 > 高中数学 > 题目详情
已知A={y|y=x2+x+2,x∈[0,1]},B={x|y=lg(x-5)}.
(1)求A∩∁RB;
(2)C={x|-x2+ax-1≥0}.若A⊆C,求a的取值范围.
考点:交、并、补集的混合运算,集合的包含关系判断及应用
专题:集合
分析:(1)根据A中x的范围确定出y的范围,进而确定出A,求出B中x的范围确定出B,求出B的补集,找出A与B补集的交集即可;
(2)表示出C中方程的解,根据A为C的子集,列出关于a的不等式组,求出不等式组的解集即可确定出a的范围.
解答: 解:(1)由A中y=x2+x+2,x∈[0,1],得到y∈(2,4),即A=(2,4),
由B中y=lg(x-5),得到x-5>0,即x>5,
∴B=(5,+∞),
∵全集为R,
∴∁RB=(-∞,5],
则A∩∁RB=(2,4);
(2)C中方程变形得:x2-ax+1≤0,
解得:
a-
a2-4
2
≤x≤
a+
a2-4
2
,即C=(
a-
a2-4
2
a+
a2-4
2
),
∵A⊆C,A=(2,4),
a-
a2-4
2
<2
a+
a2-4
2
>4

解得:a>
17
4
点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求使等式[
12
24
]=[
10
02
]M[
10
0-1
]成立的矩阵M.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的两个左、右焦点分别是F1(-
2
,0),F2
2
,0),且经过点A(
3
2
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)若椭圆C上两点M,N使
OM
+
ON
OA
,λ∈(0,2),求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,(a+b+c)(b+c-a)=
6
bc,求cosA.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知B=
π
3
,AC=4
3
,D为BC边上一点.
(1)设AB=3
3
,且AD为∠A的内角平分线,若
AD
AB
AC
,求λ、μ的值
(2)若AB=AD,试求△ADC的周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图四边形ABCD是矩形,PA⊥平面ABCD,PA=AD,M、N分别是PC、AB的中点.
?①求证MN∥平面PAD;
?②求证MN⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

用五点法作出函数f(x)=3sin(
π
3
-2x)在一个周期内的图象(要求列表作图).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线焦点在y轴上,F1,F2为其焦点,焦距为10,焦距是实轴长的2倍.求:
(1)双曲线的渐近线方程;
(2)若P为双曲线上一点,且满足∠F1PF2=60°,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1<2,an+1-1=an(an-1)(n∈N *)且
1
a1
+
1
a2
+…+
1
a2014
=1,则a2015-4a1的最小值为
 

查看答案和解析>>

同步练习册答案