精英家教网 > 高中数学 > 题目详情
8.如图所示,四边形ABCD的外接圆为圆O,线段AB与线段DC的延长线交于点E,$\frac{AD}{DE}$=$\frac{1}{3}$.
(1)若BC=1,求BE的长度;
(2)若AC为∠DAB的角平分线,记BE=λDC(λ∈R),求λ的值.

分析 (1)运用圆的内接四边形的性质和三角形相似的判定和性质,即可求得BE=3;
(2)运用三角形的内角平分线定理和圆的切割线定理,结合条件,即可得到λ的值为3.

解答 解:(1)∵四边形ABCD的外接圆为圆O,
线段AB与线段DC的延长线交于点E,
由∠BCE=∠DAE,∠BEC=∠DEA,
∴△EBC∽△EDA,
∴$\frac{BE}{DE}=\frac{BC}{AD}$,
∵$\frac{AD}{DE}$=$\frac{1}{3}$,BC=1,
∴BE=3;
(2)在△DAE中,AC为∠DAB的角平分线,
则$\frac{AD}{AE}$=$\frac{DC}{CE}$,即有AD•CE=AE•DC①
由于EA,ED是圆的两条割线,
则DE•CE=AE•BE②
①÷②,$\frac{AD}{DE}$=$\frac{DC}{BE}$,
由$\frac{AD}{DE}$=$\frac{1}{3}$,可得$\frac{DC}{BE}$=$\frac{1}{3}$,
由BE=λDC(λ∈R),
可得λ=3.

点评 本题考查圆的内接四边形的性质,主要三角形相似的判定和性质,同时考查三角形内角平分线的性质和圆的切割线定理的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.8个人分两排坐,每排4人,限定甲坐在前排,乙、丙必须坐在同一排,则不同安排办法有8640种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+y2=1,(a>1),过点A(-a,0)斜率为k(k>0)的直线交椭圆于点B.直线BO(O为坐标原点)交椭圆于另一点C.
(1)当a=2时是否存在k使得|AC|=|BC|?
(2)若k∈[$\frac{1}{2}$,1],求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在四面体P-ABC中,PA=PB=a,PC=AB=BC=CA=b,且a<b,则$\frac{a}{b}$的取值范围是($\frac{\sqrt{6}-\sqrt{2}}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右顶点是双曲线$\frac{x^2}{3}-{y^2}=1$的顶点,且椭圆的上顶点到双曲线的渐近线的距离为$\frac{{\sqrt{3}}}{2}$,
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在同时满足下列两个条件的直线l:①与双曲线相交于Q1、Q2两点,且$\overrightarrow{O{Q_1}}•\overrightarrow{O{Q_2}}=-5$,②与相交于M1、M2两点,且$|{{M_1}{M_2}}|=\sqrt{10}$.若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)过点(0,-2),且离心率为$\frac{{\sqrt{5}}}{3}$.
(1)求椭圆E的方程;
(2)如图,ABD是椭圆E的顶点,M是椭圆E上除顶点外的任意一点,直线DM交x轴于点Q,直线AD交BM于点P,设BM的斜率为k,PQ的斜率为m,求动点N(m,k)轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的两焦点分别为F1,F2.点D为椭圆E上任意一点,△DF1F2面积最大值为1,椭圆的离心率为$\frac{\sqrt{2}}{2}$.
(1)求椭圆E的方程;
(2)已知过点(1,0)的直线l与椭圆E相交于A,B两点,试问:在直线x=2上是否存在点P,使得△PAB是以点P为直角的等腰直角三角形?若存在,求出点P的坐标及直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知定长为3的线段AB的端点在抛物线y2=2x上移动,M为AB的中点,求M到y轴的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知sinα+cosα=$\frac{1}{5}$,α∈(0,π),求sinα-cosα及tanα的值.

查看答案和解析>>

同步练习册答案