精英家教网 > 高中数学 > 题目详情
18.已知sinα+cosα=$\frac{1}{5}$,α∈(0,π),求sinα-cosα及tanα的值.

分析 把已知等式两边平方,利用完全平方公式及同角三角函数间的基本关系变形求出2sinαcosα的值,进而判断出sinα-cosα的正负,利用完全平方公式及同角三角函数间的基本关系求出sinα-cosα的值,联立求出sinα与cosα的值,即可确定出tanα的值.

解答 解:把sinα+cosα=$\frac{1}{5}$①,两边平方得:(sinα+cosα)2=1+2sinαcosα=$\frac{1}{25}$,
∴2sinαcosα=-$\frac{24}{25}$,
∵α∈(0,π),
∴sinα>0,cosα<0,即sinα-cosα>0,
∴(sinα-cosα)2=1-2sinαcosα=$\frac{49}{25}$,即sinα-cosα=$\frac{7}{5}$②,
联立①②,解得:sinα=$\frac{4}{5}$,cosα=-$\frac{3}{5}$,
则tanα=-$\frac{4}{3}$.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图所示,四边形ABCD的外接圆为圆O,线段AB与线段DC的延长线交于点E,$\frac{AD}{DE}$=$\frac{1}{3}$.
(1)若BC=1,求BE的长度;
(2)若AC为∠DAB的角平分线,记BE=λDC(λ∈R),求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知定点F1(-1,0),F2(1,0),P为圆F1:(x+1)2+y2=8上一动点,点M满足($\overrightarrow{MP}$+$\overrightarrow{M{F}_{2}}$)•$\overrightarrow{{F}_{2}P}$=0,$\overrightarrow{{F}_{1}M}$=λ$\overrightarrow{{F}_{1}P}$(0≤λ≤1).
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)设点M坐标为(x,y),求证:|MF2|=$\sqrt{2}$-$\frac{\sqrt{2}}{2}$x;
(Ⅲ)过点F2作直线l交C于A,B两点,求$\frac{1}{|A{F}_{2}|}$+$\frac{1}{|B{F}_{2}|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在边长为1的正三角形ABC中,|$\overrightarrow{AB}$-$\overrightarrow{BC}$|的值为(  )
A.1B.2C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若直线x+3y+m=0截半圆y=$\sqrt{25-{x}^{2}}$所得的弦长为8,则m=-3$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设中心在坐标原点的椭圆左、右两个焦点分别为F1、F2,过F2的一条直线与该椭圆相交于A、B两点,已知等边三角形ABF1的边长为4.求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和Sn=$\frac{15}{8}n$+$\frac{3}{8}{n}^{2}$,{bn}为等差数列,且a1=b1与a2=a1(b2-b1),求{bn}的通项bn及其前12项的和 T12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足a1=$\frac{π}{6}$,an+1∈(-$\frac{π}{2}$,$\frac{π}{2}$),且tanan+1•cosan=1(n∈N*).
(1)求{tan2an}的前n项和;
(2)求正整数m,使得11sina1•sina2…sinam=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在等差数列{an}中,已知a2=3,公差d=2,设bn=$\frac{2}{{a}_{n}{a}_{n+1}}$,则数列{bn}的前n项和Tn=(  )
A.$\frac{1}{2n+1}$B.$\frac{2n+2}{2n+1}$C.$\frac{2n}{2n+1}$D.$\frac{n}{2n+1}$

查看答案和解析>>

同步练习册答案