7£®ÒÑÖªÍÖÔ²µÄÖÐÐÄÊÇ×ø±êÔ­µãO£¬½¹µãÔÚxÖáÉÏ£¬ÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬×ø±êÔ­µãOµ½¹ýÓÒ½¹µãFÇÒбÂÊΪ1µÄÖ±ÏߵľàÀëΪ$\frac{\sqrt{2}}{2}$£®
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©Éè¹ýÓÒ½¹µãFÇÒÓë×ø±êÖá²»´¹Ö±µÄÖ±Ïßl½»ÍÖÔ²ÓÚP¡¢QÁ½µã£¬ÔÚÏß¶ÎOFÉÏÊÇ·ñ´æÔÚµãM£¨m£¬0£©£¬Ê¹µÃ|MP|=|MQ|£¿Èô´æÔÚ£¬Çó³ömµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÀûÓÃÍÖÔ²µÄ¶¨Òå¼°ÐÔÖÊ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¼´¿ÉÇó³ö£»
£¨2£©Èô|MQ|=|MP|£¬°ÑÖ±ÏßlµÄ·½³ÌÓëÍÖÔ²µÄ·½³ÌÁªÁ¢²¢ÀûÓøùÓëϵÊýµÄ¹ØÏµ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâÉè´ËÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¬¹ýÓÒ½¹µãFÇÒбÂÊΪ1µÄÖ±Ïߵķ½³ÌΪ£ºy=x-c£¬
Ôò$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{\frac{c}{\sqrt{2}}=\frac{\sqrt{2}}{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{c=1}\\{a=\sqrt{2}}\end{array}\right.$£¬¡àb=1£¬¡àÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}=1$£®
£¨2£©¼ÙÉè´æÔÚµãM£¨m£¬0£©£¨0£¼m£¼1£©Âú×ãÌõ¼þ£¬Ê¹µÃ|MP|=|MQ|£¬
ÒòΪֱÏßÓëxÖá²»´¹Ö±£¬
ËùÒÔÖ±ÏßlµÄ·½³Ì¿ÉÉèΪy=k£¨x-1£©£¨k¡Ù0£©£¬P£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£®
´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¨1+2k2£©x2-4k2x+2k2-2=0£®
ÓÉ¡÷£¾0ºã³ÉÁ¢£¬¡àx1+x2=$\frac{4{k}^{2}}{1+2{k}^{2}}$£®£¨*£©
¡ß|MQ|=|MP|£¬
¡à$\sqrt{£¨{x}_{2}-m£©^{2}+{{y}_{2}}^{2}}$=$\sqrt{£¨{x}_{1}-m£©^{2}+{{y}_{1}}^{2}}$£¬
ÓÖy1=k£¨x1-1£©£¬y2=k£¨x2-1£©£®
»¯Îª£¨1+k2£©£¨x1+x2£©-2m-2k2=0£¬
°Ñ£¨*£©´úÈëÉÏʽµÃ£¨1+k2£©¡Á$\frac{4{k}^{2}}{1+2{k}^{2}}$-2m-2k2=0£¬
»¯Îªm=$\frac{{k}^{2}}{1+2{k}^{2}}$=$\frac{1}{2+\frac{1}{{k}^{2}}}$£¬
¡ßk2£¾0£¬¡à0£¼m£¼$\frac{1}{2}$£®

µãÆÀ ÊìÁ·ÕÆÎÕÍÖÔ²µÄ¶¨Òå¼°ÐÔÖÊ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢ÁâÐεÄÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²µÄÏཻÎÊÌâµÄ½âÌâģʽ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Ä³°à³ï°ìµÄÔªµ©Íí»áÓÉ6¸ö½ÚÄ¿×é³É£¬ÆäÖÐÓÐÒ»¸öСƷ¡¢Ò»¸öÏàÉù¡¢Ò»¸öÊ«ÀÊËУ¬Ñݳö˳ÐòÓÐÈçÏÂÒªÇó£ºÐ¡Æ·±ØÐëÅÅÔÚǰÁ½Î»£¬ÏàÉù²»ÄÜÅÅÔÚµÚһλ£¬Ê«ÀÊËв»ÄÜÅÅÔÚ×îºóһ룬Ôò¸Ã´ÎÍí»á½ÚÄ¿µÄÑݳö˳ÐòµÄ±àÅÅ·½°¸ÓÐ174ÖÖ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$Âú×㣺|$\overrightarrow{a}$|=4£¬|$\overrightarrow{b}$|=3£¬£¨2$\overrightarrow{a}$-3$\overrightarrow{b}$£©•£¨2$\overrightarrow{a}$+$\overrightarrow{b}$£©=61£»
£¨1£©ÇóÏòÁ¿$\overrightarrow{a}$+$\overrightarrow{b}$µÄÄ££»
£¨2£©Èô$\overrightarrow{AB}$=$\overrightarrow{a}$£¬$\overrightarrow{AC}$=$\overrightarrow{b}$£¬×÷Èý½ÇÐÎABC£¬µãPÊÇÈý½ÇÐÎABCËùÔÚÆ½ÃæÉÏÈÎÒâÒ»µã£¬Çó£¨$\overrightarrow{PC}$+$\overrightarrow{PB}$£©•$\overrightarrow{PA}$µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªÅ×ÎïÏßC£ºy2=4x£¬OÎª×ø±êÔ­µã£¬FΪÆä½¹µã£¬µ±µãPÔÚÅ×ÎïÏßCÉÏÔ˶¯Ê±£¬$\frac{|PO|}{|PF|}$µÄ×î´óֵΪ£¨¡¡¡¡£©
A£®$\frac{2\sqrt{3}}{3}$B£®$\frac{4}{3}$C£®$\frac{\sqrt{5}}{2}$D£®$\frac{5}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=ax2+2x-lnx£¨a¡ÊR£©£®
£¨¢ñ£©Èôa=4£¬Çóº¯Êýf£¨x£©µÄ¼«Öµ£»
£¨¢ò£©Èôf¡ä£¨x£©ÔÚ£¨0£¬1£©ÓÐΨһµÄÁãµãx0£¬ÇóaµÄȡֵ·¶Î§£»
£¨¢ó£©Èôa¡Ê£¨-$\frac{1}{2}$£¬0£©£¬Éèg£¨x£©=a£¨1-x£©2-2x-1-ln£¨1-x£©£¬ÇóÖ¤£ºg£¨x£©ÔÚ£¨0£¬1£©ÄÚÓÐΨһµÄÁãµãx1£¬ÇÒ¶Ô£¨¢ò£©ÖеÄx0£¬Âú×ãx0+x1£¾1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÍÖÔ²CµÄ·½³ÌΪ£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬ÍÖÔ²µÄ×óÓÒ½¹µãF1£¬F2ÓëÆä¶ÌÖáµÄ¶Ëµã¹¹³ÉµÈ±ßÈý½ÇÐΣ¬ÇÒÂú×ãa2=4c£¨cÊÇÍÖÔ²CµÄ°ë½¹¾à£©£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßl£º3x-2y=0ÓëÍÖÔ²CÔÚxÖáÉÏ·½µÄÒ»¸ö½»µãΪP£¬FÊÇÍÖÔ²µÄÓÒ½¹µã£¬ÊÔ̽¾¿ÒÔPFΪֱ¾¶µÄÔ²ÓëÒÔÍÖÔ²³¤ÖáΪֱ¾¶µÄÔ²µÄλÖùØÏµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®É輯ºÏA={x|0¡Üx¡Ü2}£¬B={x|x¡Ýa}£¬ÈôA⊆B£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®a¡Ü0B£®a£¼0C£®a£¼2D£®a¡Ü2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®º¯Êýf£¨x£©=3x+x-3µÄÁãµãËùÔÚµÄÇø¼äÊÇ£¨¡¡¡¡£©
A£®£¨-2£¬-1£©B£®£¨-1£¬0£©C£®£¨0£¬1£©D£®£¨1£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Éèa£¾0£¬b£¾0£¬ÇÒa+b=2£¬Ôò$\frac{1}{a}$+$\frac{1}{b}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®1B£®2C£®4D£®4.5

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸