精英家教网 > 高中数学 > 题目详情
△ABC中,a,b,c分别为内角A,B,C的对边,
m
=(sinA+sinB-sinC,sinC),
n
=(sinB,sinA+sinC-sinB),且
m
n

(1)求A的大小;
(2)若BC边上的高为1,求△ABC面积的最小值.
考点:平面向量数量积的运算,三角函数中的恒等变换应用
专题:解三角形,平面向量及应用
分析:(1)根据向量平行的坐标公式建立方程关系,利用余弦定理即可求A的大小;
(2)利用三角形的面积公式,分别表示出三角形的面积,得到S2=
1
4
a2=
1
4
(c2+b2-bc),再利用基本不等式求出面积的最小值.
解答: 解:(1)∵
m
=(sinA+sinB-sinC,sinC),
n
=(sinB,sinA+sinC-sinB),且
m
n

∴(sinA+sinB-sinC)(sinA+sinC-sinB)=sinCsinB,
∴sin2A-sin2C-sin2B+sinCsinB=0,
根据正弦定理得a2=c2+b2-bc,
由余弦定理得cosA=
b2+c2-a2
2bc
=
1
2

∴A=
π
3

(2)设ABC的面积为S,BC边上的高为h,
∴S=
1
2
bcsinA=
3
4
bc,即bc=
4
3
3
S,S=
1
2
ah=
1
2
a,
∴S2=
1
4
a2=
1
4
(c2+b2-bc)≥
1
4
(2bc-bc)=
1
4
bc=
1
4
×
4
3
3
S=
3
3
S,当且仅当b=c时取等号,
∴S≥
3
3

故△ABC面积的最小值为
3
3
点评:本题主要考查三角函数的化简和求值以及三角形的面积公式,即基本不等式的应用,利用余弦定理求出A的大小是解决本题的关键,属于中档题,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={正方体},B={长方体},C={正四棱柱},D={直平行六面体},则(  )
A、A⊆B⊆C⊆D
B、C⊆A⊆B⊆D
C、A⊆C⊆B⊆D
D、它们之间不都存在包含关系

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,a=2,c=1,则∠C的取值范围是(  )
A、(0,
π
6
]
B、[
π
6
π
3
]
C、[
π
3
π
2
D、(
π
2
,π)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinx=
5-a
3
恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x,椭圆
x2
9
+
y2
m
=1,它们有共同的焦点F2,并且相交于P、Q两点,F1是椭圆的另一个焦点,
试求:
(1)m的值;
(2)P、Q两点的坐标;
(3)△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设α,β为锐角,且(1+sinα-cosα)(1+sinβ-cosβ)=2sinαsinβ,则α+β=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log
1
2
(3+2x-x2)的单调递增区间是(  )
A、(1,3)
B、(3,+∞)
C、(-∞,-1)
D、(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=xlna+a-x(a>0,且a≠1)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线E上的点到直线y=-2的距离比到点F(0,1)的距离大1.
(1)求曲线E的方程;
(2)若过M(1,4)作曲线E的弦AB,使弦AB以M为中点,求弦AB所在直线的方程;
(3)若直线1:y=x+b与曲线E相切于点P,求以点P为圆心,且与曲线E的准线相切的圆的方程.

查看答案和解析>>

同步练习册答案