【题目】设函数f(x)=aexlnx+
,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.
(Ⅰ)求a、b;
(Ⅱ)证明:f(x)>1.
【答案】解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=
+
,
由题意可得f(1)=2,f′(1)=e,
故a=1,b=2;
(Ⅱ)由(Ⅰ)知,f(x)=exlnx+
,
∵f(x)>1,∴exlnx+
>1,∴lnx>
﹣
,
∴f(x)>1等价于xlnx>xe﹣x﹣
,设函数g(x)=xlnx,则g′(x)=1+lnx,
∴当x∈(0,
)时,g′(x)<0;当x∈(
,+∞)时,g′(x)>0.
故g(x)在(0,
)上单调递减,在(
,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g(
)=﹣
.
设函数h(x)=xe﹣x﹣
,则h′(x)=e﹣x(1﹣x).
∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,
故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
从而h(x)在(0,+∞)上的最大值为h(1)=﹣
.
综上,当x>0时,g(x)>h(x),即f(x)>1
【解析】(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣
,设函数g(x)=xlnx,函数h(x)=
,只需证明g(x)min>h(x)max , 利用导数可分别求得g(x)min , h(x)max;
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知过点
的直线
的参数方程是
(
为参数).以平面直角坐标系的原点为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程式为
.
(Ⅰ)求直线
的普通方程和曲线
的直角坐标方程;
(Ⅱ)若直线
与曲线
交于两点
,且
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x2﹣1|+x2﹣kx.
(1)若k=2时,求出函数f(x)的单调区间及最小值;
(2)若f(x)≥0恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为
(
),传输信息为
,其中
,
运算规则为:
,
,
,
,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( )
A. 11010 B. 01100 C. 10111 D. 00011
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(12分)某同学参加3门课程的考试。假设该同学第一门课程取得优秀成绩的概率为
,第二、第三门课程取得优秀成绩的概率分别为
,
(
>
),且不同课程是否取得优秀成绩相互独立。记ξ为该生取得优秀成绩的课程数,其分布列为
ξ | 0 | 1 | 2 | 3 |
|
|
|
|
|
(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;
(Ⅱ)求
,
的值;
(Ⅲ)求数学期望
ξ。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com