精英家教网 > 高中数学 > 题目详情

已知为锐角,且,函数,数列{}的首项.
(Ⅰ)求函数的表达式;
(Ⅱ)求数列的前项和.

(1);(2).

解析试题分析:本题是三角函数和数列的一道综合题,考查二倍角公式、特殊角函数值以及等比数列的通项公式和错位相减法求和等基础知识,考查分析问题、解决问题的能力,考查计算能力.第一问,因为表达式中有,而已知,正好符合二倍角公式,所以先利用这个公式求出,由于为锐角,而,所以,将角代入中,可以求出;第二问,先利用构造法构造一个等比数列,利用等比数列的通项公式,求出,再求,要求,先把分开用2部分表示,一部分符合错位相减法,另一部分是等差数列,最后把这2部分的和加在一起即可.
试题解析:⑴   又∵为锐角,
   ∴                 5分
(2) ∵,     ∴
    ∴数列是以2为首项,2为公比的等比数列。
可得,∴,                      9分
所以,
下面先求的前项和


两式相减,得


      12分
12分
考点:1.二倍角公式;2.特殊角的三角函数值;3.构造法求通项公式;4.错位相减法;5.分组求和;6.等差、等比数列的求和公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的图象(部分)如图所示.

(1)试确定的解析式;
(2)若,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,A、B、C为三个内角,a、b、c为相应的三条边,<C<,且
(1)判断△ABC的形状;
(2)若||=2,求·的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在一个周期内的图象如图所示,点为图象的最高点,为图象与轴的交点,且三角形的面积为

(Ⅰ)求的值及函数的值域;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数>0,>0,的图像与轴的交点为(0,1),它在轴右侧的第一个最高点和第一个最低点的坐标分别为

(1)求的解析式及的值;
(2)若锐角满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为R的函数的一段图象如图所示.

(1)求的解析式;
(2)若求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.(1)求的最小正周期、最大值及取最大值时的集合;
(2)若锐角满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中的最小正周期为
(Ⅰ)求的值,并求函数的单调递减区间;
(Ⅱ)在锐角中,分别是角的对边,若的面积为,求的外接圆面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中),是函数的两个不同的零点,且的最小值为
(1)求的值;
(2)若,求的值.

查看答案和解析>>

同步练习册答案