精英家教网 > 高中数学 > 题目详情
利用随机模拟方法可估计某无理数m的值,读如图的程序,其中RND(N)表示产生(0,1)间的随机小数,运行此程序,输出的结果P是m的估计值,则m为(  )
A、无理数eB、lg2
C、lg3D、π
考点:程序框图
专题:算法和程序框图
分析:分析:根据题意,rand(  )表示产生区间(0,1)上的随机数,它能随机产生区间(0,1)内的任何一个实数,当x,y任取(0,1)上的数时,求出x2+y2≤1的面积,结合随机模拟实验的频率约为概率,即可得到答案.
解答: 解:根据题意,模拟程序运行的过程,得出执行此程序,输出P是:
任取(0,1)上的两个数x,y,求x2+y2≤1的面积4倍;
∵x∈(0,1),y∈(0,1)时对应x2+y2≤1的平面区域的面积为
π
4

∴输出的P=4×
π
4
=π;
即m的估计值为π.
故选:D.
点评:本题考查了算法程序的应用问题,也考查了模拟方法估计圆周率π的问题,解题的关键是清楚该算法程序的功能是什么,是易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线ax+y+3=0与圆x2+y2-10x+6y+25=0相切,则a的值为(  )
A、
3
4
B、
3
4
或-
3
4
C、-
3
4
D、
4
3
或-
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sinx的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移
π
3
个单位,得到的图象对应的解析式是(  )
A、y=sin(2x+
π
3
B、y=sin(
1
2
x+
π
3
C、y=sin(
1
2
x+
π
6
D、y=sin(2x+
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在(-∞,+∞)上的偶函数,f(x)=(a-1)x3+2x2+(b-2)x+c(a、b、c为常数),则函数g(x)=sinbx+a的最小正周期及最小值分别为(  )
A、π,0B、2π,-1
C、π,1D、2π,0

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数f(x)=sin(2x+
π
3
)的图象向左平移θ个单位,得到偶函数g(x)的图象,则θ的最小正值为(  )
A、
π
12
B、
5
12
π
C、
π
3
D、
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=-x2+mx+1在(-∞,1)上是增函数,则m的取值范围是(  )
A、{2}
B、(-∞,2]
C、[2,+∞)
D、(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

如果
a
b
是两个单位向量,那么下列四个结论中正确的是(  )
A、
a
=
b
B、
a
b
=1
C、
a
2
b
2
D、|
a
|2=|
b
|2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=k
x-1
x+1

(1)求函数F(x)=f(x)-g(x)的单调区间;
(2)当x>1时,函数f(x)>g(x)恒成立,求实数k的取值范围;
(3)求证:ln(1+
1
12
)+ln(1+
1
22
)+…+ln(1+
1
n2
)>
n
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x),x∈R是周期为4的偶函数,且f(x)=x2+1,x∈(0,2),求f(5),f(7).

查看答案和解析>>

同步练习册答案