精英家教网 > 高中数学 > 题目详情
16.函数f(x)=x3+bx2+cx+d(b,c,d均为常数),若f(x)在x=x1时取得极大值且x1∈(0,1),在x=x2时取得极小值且x2∈(1,2),则(b+$\frac{1}{2}$)2+(c-3)2的取值范围是(  )
A.(5,25)B.($\sqrt{5}$,5)C.($\frac{37}{4}$,25)D.($\frac{\sqrt{37}}{2}$,5)

分析 求导f′(x)=3x2+2bx+c,从而可得x1、x2是方程3x2+2bx+c=0的两个根,从而可得$\left\{\begin{array}{l}{f′(0)=c>0}\\{f′(1)=3+2b+c<0}\\{f′(2)=12+4b+c>0}\end{array}\right.$;从而作出其可行域,而(b+$\frac{1}{2}$)2+(c-3)2的几何意义是阴影内的点与点B(-$\frac{1}{2}$,3)的距离的平方,从而求(b+$\frac{1}{2}$)2+(c-3)2的取值范围是(5,25).

解答 解:∵f(x)=x3+bx2+cx+d,
∴f′(x)=3x2+2bx+c,
又∵f(x)在x=x1时取得极大值且x1∈(0,1),在x=x2时取得极小值且x2∈(1,2),
∴x1、x2是方程3x2+2bx+c=0的两个根,
∴$\left\{\begin{array}{l}{f′(0)=c>0}\\{f′(1)=3+2b+c<0}\\{f′(2)=12+4b+c>0}\end{array}\right.$;
作平面区域如下,

(b+$\frac{1}{2}$)2+(c-3)2的几何意义是阴影内的点与点B(-$\frac{1}{2}$,3)的距离,
点B到直线3+2b+c=0的距离的平方为$\frac{(3-1+3)^{2}}{{2}^{2}+{1}^{2}}$=5,
由$\left\{\begin{array}{l}{3+2b+c=0}\\{12+4b+c=0}\end{array}\right.$解得,
E(-$\frac{9}{2}$,6);
故|BE|2=(-$\frac{1}{2}$+$\frac{9}{2}$)2+(6-3)2=25;
故(b+$\frac{1}{2}$)2+(c-3)2的取值范围是(5,25);
故选:A.

点评 本题考查了导数的综合应用及简单线性规划的应用,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.a是平面α外的一条直线,过a作平面β,使β∥α,这样的β(  )
A.只有一个B.至少有一个C.不存在D.至多有一个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.解方程:$\frac{\frac{1}{4}{p}^{2}}{16}$+$\frac{\frac{3}{4}{p}^{2}}{12}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点与抛物线y2=4x的焦点F重合,且椭圆短轴的两个三等分点与焦点F构成正三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)若椭圆在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA、PB分别交椭圆于另外两点A、B,求证:直线AB的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的两个焦点为F1、F2,离心率为$\frac{{\sqrt{2}}}{2}$,直线l与椭圆相交于A、B两点,且满足|AF1|+|AF2|=4$\sqrt{2},{K_{OA}}•{K_{OB}}=-\frac{1}{2}$,O为坐标原点.
(I)求椭圆的方程;
(Ⅱ)求$\overrightarrow{OA}•\overrightarrow{OB}$的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知四个命题:
①若直线l∥平面a,则直线l的垂线必平行于平面a;
②若直线l与平面a相交,则有且只有一个平面经过干线l与平面a垂直;
③若一个三棱锥每两个相邻侧面所成的角都相等,则这个三棱锥是正三棱锥;
④若四棱柱的任意两条对角线相交且互相平分,则这个四棱柱为平行六面体.
其中正确的命题是④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义在[0,+∞)的函数f(x),对任意x≥0,恒有f(x)>f′(x),a=$\frac{f(2)}{e^2}$,b=$\frac{f(3)}{e^3}$,则a与b的大小关系为(  )
A.a>bB.a<bC.a=bD.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列{an}的前n项和为Sn,已知a1=$\frac{1}{2}$,Sn=n2an-n(n-1),n=1≥2,
(1)写出Sn与Sn-1的递推关系式(n≥2),并求Sn关于n的表达式;
(2)设fn(x)=$\frac{{S}_{n}}{n}$xn+1,bn=fn′(p)(p∈R),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知非零实数m使不等式|x-m|+|x+2m|≥|m||log2|m|对一切实数x恒成立.
(Ⅰ)求实数m的取值范围M;
(Ⅱ)如果a,b∈M,求证:|$\frac{2a}{3}$+$\frac{b}{4}$|<8.

查看答案和解析>>

同步练习册答案