精英家教网 > 高中数学 > 题目详情
1.点M(x,y)是不等式组$\left\{{\begin{array}{l}{0≤x≤\sqrt{3}}\\{y≤3}\\{x≤\sqrt{3}y}\end{array}}\right.$表示的平面区域Ω内的一动点,则2x-y+1的最大值是$2\sqrt{3}$.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.

解答 解:平面区域Ω如图阴影所示,设z=2x-y,得y=2x-z,
平移直线y=2x-z,
由图象可知当直线y=2x-z经过点A时,直线y=2x-z的截距最小,
由$\left\{\begin{array}{l}{x=\sqrt{3}}\\{x=\sqrt{3}y}\end{array}\right.$,得$\left\{\begin{array}{l}{x=\sqrt{3}}\\{y=1}\end{array}\right.$,即经过A$(\sqrt{3},1)$时,2x-y+1最大值为$2\sqrt{3}$.
故答案为:$2\sqrt{3}$.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若实数x,y满足$\left\{\begin{array}{l}x+y-3≥0\\ x-y-3≤0\\ 0≤y≤1\end{array}\right.$,则$z=\frac{2x+y}{x+y}$的最小值为(  )
A.$\frac{5}{3}$B.2C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}满足a1=1,并且a2n=2an,a2n+1=an+1(n∈N*),则a5=3,a2016=192.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}中,2a2+a3+a5=20,且前10项和S10=100.
(I)求数列{an}的通项公式;
(II)若${b}_{n}=\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若x,y满足$\left\{\begin{array}{l}x≥0\\ x+2y-3≥0\\ 2x+y-3≤0\end{array}\right.$,则u=2x+y的最大值为(  )
A.3B.$\frac{5}{2}$C.2D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}的前n项和Sn满足Sn=2an-2.
(1)求数列{an}的通项公式;
(2)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.无穷等比数列首项为1,公比为q(q>0)的等边数列前n项和为Sn,则$\underset{lim}{n→∞}$Sn=2,则q=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.由曲线y=x2和曲线y=$\sqrt{x}$围成的一个叶形图如图所示,则图中阴影部分面积为(  )
A.$\frac{1}{3}$B.$\frac{3}{10}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在区间[0,1]上随机抽取两个数x,y,则事件“xy≥$\frac{1}{2}$”发生的概率为$\frac{1}{2}$-$\frac{1}{2}$ln2.

查看答案和解析>>

同步练习册答案