精英家教网 > 高中数学 > 题目详情
9.已知等差数列{an}中,2a2+a3+a5=20,且前10项和S10=100.
(I)求数列{an}的通项公式;
(II)若${b}_{n}=\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和.

分析 (I)利用等差数列的通项公式及其前n项和公式即可得出.
(II)${b}_{n}=\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,利用“裂项求和”方法即可得出.

解答 解:(I)设等差数列{an}的公差为d,∵2a2+a3+a5=20,且前10项和S10=100,
∴4a1+8d=20,$10{a}_{1}+\frac{10×9}{2}$d=100,
联立解得a1=1,d=2.
∴an=1+2(n-1)=2n-1.
(II)${b}_{n}=\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴数列{bn}的前n项和=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.

点评 本题考查了等差数列的通项公式及其前n项和公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.如图所示的阴影部分是由底边长为1,高为1的等腰三角形及宽为1,长分别为2和3的两矩形所构成.设函数S=S(a)(a≥0)是图中阴影部分介于平行线y=0及y=a之间的那一部分的面积,则函数S(a)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数y=x2-lnx的一条切线是y=x-b,则b=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足a1=511,4an=an-1-3(n≥2).
(Ⅰ)求证:数列{an+1}为等比数列,并求数列{an}的通项公式;
(Ⅱ)令bn=|log2(an+1)|,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(x)=$\left\{\begin{array}{l}{\sqrt{x-1},x≥2}\\{lo{g}_{2}({2}^{x}+1),0≤x<2}\end{array}\right.$,则f(f(1))=2,f(x)最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知等比数列{an}中,a2=2,a3•a4=32,那么a8的值为128.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.点M(x,y)是不等式组$\left\{{\begin{array}{l}{0≤x≤\sqrt{3}}\\{y≤3}\\{x≤\sqrt{3}y}\end{array}}\right.$表示的平面区域Ω内的一动点,则2x-y+1的最大值是$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)解不等式:|x-1|+|x-2|≤2.
(2)求函数$y=x\sqrt{1-{x^2}}({0<x<1})$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a,b是不相等的实数,则下列不等式总成立的是(  )
A.$\frac{{a}^{2}+{b}^{2}}{2}$>abB.$\frac{|a+b|}{2}$>$\sqrt{ab}$C.$\frac{a+b}{\sqrt{ab}}$>2D.$\frac{{a}^{2}+{b}^{2}}{ab}$>2

查看答案和解析>>

同步练习册答案