精英家教网 > 高中数学 > 题目详情
13.若m为正整数,则${∫}_{-1}^{1}$x(x+sin2mx)dx=$\frac{2}{3}$.

分析 将被积函数变形,两条定积分的可加性以及微积分基本定理求值.

解答 解:m为正整数,则${∫}_{-1}^{1}$x(x+sin2mx)dx=${∫}_{-1}^{1}$(x2+xsin2mx)dx=2${∫}_{0}^{1}{x}^{2}dx$+${∫}_{-1}^{1}xsi{n}^{2}mxdx$=2×$\frac{1}{3}{x}^{3}{|}_{0}^{1}$+0=$\frac{2}{3}$;
故答案为:$\frac{2}{3}$.

点评 本题考查定积分的计算;利用被积函数的原函数或者奇偶性求定积分.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数$f(x)={(\frac{1}{2})^x}$与g(x)=-|x|在区间(-∞,0)上的单调性为(  )
A.都是增函数B.f(x)为减函数,g(x)为增函数
C.都是减函数D.f(x)为增函数,g(x)为减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆E:(x+$\sqrt{3}$)2+y2=16,点F($\sqrt{3}$,0),P是圆E上任意一点,线段PF的垂直平分线和半径PE相交于Q.(Ⅰ)求动点Q的轨迹Γ的方程;
(Ⅱ)直线l过点(1,1),且与轨迹Γ交于A,B两点,点M满足$\overrightarrow{AM}$=$\overrightarrow{MB}$,点O为坐标原点,延长线段OM与轨迹Γ交于点R,四边形OARB能否为平行四边形?若能,求出此时直线l的方程,若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某四棱锥的三视图如图所示,则该四棱锥的侧面积为(  )
A.8B.8+4$\sqrt{10}$C.2$\sqrt{10}$+$\sqrt{13}$D.4$\sqrt{10}$+2$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“对称数”是指从左到右读与从右到左读都一样的正整数,如121,666,54345等,则在所有的六位数中,不同的“对称数”的个数是(  )
A.100B.900C.999D.1000

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.将7名应届师范大学毕业生分配到3所中学任教
(1)4个人分到甲学校,2个人分到乙学校,1个人分到丙学校,有多少种不同的分配方案?
(2)一所学校去4个人,另一所学校去2个人,剩下的一个学校去1个人,有多少种不同的分配方案?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义域为R的函数f(x)满足f(x+2)=$\sqrt{3}$f(x),x∈[0,2)时,f(x)=$\left\{\begin{array}{l}{2{x}^{2}-2x,x∈[0,1)}\\{-2•(\frac{1}{3})^{|x-\frac{4}{3}|},x∈[1,2)}\end{array}\right.$,x
∈[-4,-2)时,f(x)≥t2-$\frac{7}{3}$t恒成立,则实数t的取值范围是(  )
A.[$\frac{1}{2}$,3)B.(-∞,$\frac{1}{2}$]∪(3,+∞)C.[$\frac{1}{3}$,2]D.(-∞,$\frac{1}{3}$]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若$\frac{1+cosα}{sinα}$=2,则cosα-3sinα=(  )
A.-3B.3C.-$\frac{9}{5}$D.$\frac{9}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某渔业公司为了解投资收益情况,调查了旗下的养鱼场和远洋捕捞队近10个月的利润情况.根据所收集的数据得知,近10个月总投资养鱼场一千万元,获得的月利润频数分布表如下:
月利润(单位:千万元)-0.2-0.100.10.3
频数21241
近10个月总投资远洋捕捞队一千万元,获得的月利润频率分布直方图如下:

(Ⅰ)根据上述数据,分别计算近10个月养鱼场与远洋捕捞队的月平均利润;
(Ⅱ)公司计划用不超过6千万元的资金投资于养鱼场和远洋捕捞队,假设投资养鱼
场的资金为x(x≥0)千万元,投资远洋捕捞队的资金为y(y≥0)千万元,且投资养鱼场的资金不少于投资远洋捕捞队的资金的2倍.试用调查数据,给出公司分配投资金额的建议,使得公司投资这两个项目的月平均利润之和最大.

查看答案和解析>>

同步练习册答案