精英家教网 > 高中数学 > 题目详情
若(1-2i)i=a+bi(a,b∈R,i为虚数单位),则ab=
 
考点:复数代数形式的乘除运算
专题:数系的扩充和复数
分析:利用复数的运算法则、复数相等即可得出.
解答: 解:∵a+bi=(1-2i)i=2+i(a,b∈R,i为虚数单位),
∴a=2,b=1.
∴ab=2.
故答案为:2.
点评:本题考查了复数的运算法则、复数相等,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知全集S=R,集合M={3,4,5},P={1,3,6},那么{3}是(  )
A、M∩P
B、M∪P
C、(CSM)∪(CSP)
D、(CSM)∩(CSP)

查看答案和解析>>

科目:高中数学 来源: 题型:

直线
3
x-y+1=0的倾斜角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

附加题:
如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.
(1)证明:EF∥平面PAD.
(2)证明:CD⊥平面PAD.
(3)求三棱锥E-ABC的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A.∠B.∠C的对边分别是a、b、c,求证:a2sin2B+b2sin2A=2absinC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(2cosα,2sinα),
b
=(cosβ,sinβ),0<α<β<2π.
(1)若
a
b
,求|
a
-2
b
|的值;
(2)设
c
=(2,0),若
a
+2
b
=
c
,求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列命题:
①若m?β,α⊥β,则m⊥α;
②若m∥α,m⊥β,则α⊥β;
③若α⊥β,α⊥γ,则β⊥γ;
④若α∩γ=m,β∩γ=n,m∥n,则α∥β.
上面命题中,真命题的序号是
 
(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

关于平面向量
a
b
c
,有下列三个命题:
①若
a
b
=
a
c
,则
b
=
c

②若
a
=(1,k),
b
=(-2,6),
a
b
,则k=-3;
③非零向量
a
b
满足|
a
|=|
b
|=|
a
-
b
|,则
a
a
+
b
的夹角为60°.
其中真命题的序号为
 
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
a2
+
y2
b2
=1(a>b>0)的焦点为F1(-c,0),F2(c,0),中心为O,右顶点为A,
F1A
F2A
=c2,P为椭圆上任一点.
(1)求椭圆离心率;
(2)若cos∠F1PF2=
1
3
,且△PF1F2的面积为
2
时,求椭圆的方程.
(3)在(2)的条件下,点N为椭圆上动点,若M(m,0)(m>0),求|MN|的最小值及此时N点的坐标.

查看答案和解析>>

同步练习册答案