精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x)满足f(4)=f(-2)=1,且y=f′(x)的图象如图所示,则不等式f(x)<1的解集是(  )
A、(-2,0)
B、(0,4)
C、(-2,4)
D、(-∞,-2)∪(4,+∞)
考点:利用导数研究函数的单调性
专题:导数的概念及应用
分析:根据函数的单调性和导数之间的关系,即可得到结论.
解答: 解:由函数的图象可知,当x>0时,函数f′(x)>0,函数单调递增,
当x<0时,函数f′(x)<0,函数单调递减,且当x=0时,函数取得极小值f(0),
∵f(-2)=f(4)=1,
∴当0≤x<4时,f(x)<1,当-2<x<0时,f(x)<1,
综上不等式f(x)<1的解为当-2<x<4时,
即不等式的解集为(-2,4),
故选:C
点评:本题主要考查不等式的解法,利用函数的单调性和导数之间的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax+x-b的零点x0∈(n,n+1)(n∈Z),其中常数a,b满足0<b<1<a,则n的值为(  )
A、2B、1C、-2D、-l

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的函数f(x)=
6
x2+1
+x2,则它能取到的最小值为(  )
A、2
B、4
C、2
6
D、2
6
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1棱长为1,截面AB1D1与平面ABCD相交于直线l,则点B1到直线l的距离为(  )
A、
2
2
B、
3
2
C、
5
2
D、
6
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-
y2
3
=1的左右焦点分别为F1、F2,过F2的直线交该双曲线右支于两点A、B.若|AB|=8,则△ABF1的周长为(  )
A、4
B、20
C、4
3
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

cos(-
23π
6
)=(  )
A、
3
2
B、
1
2
C、-
3
2
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设r>0,那么直线xcosθ+ysinθ=r(θ是常数)与圆
x=rcosφ
y=rsinφ
(φ是参数)的位置关系是(  )
A、相交B、相切
C、相离D、视r的大小而定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,a3=3且S5-2a1=17.等比数列{bn}中,b1=a2,b2S3=6.
(Ⅰ)求an与bn
(Ⅱ)设cn=an+1bn,设Tn=c1+c2+c3+…+cn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知内角A=
π
3
,边BC=2
3
.设内角B=x,面积为y.
(1)若x=
π
4
,求边AC的长;
(2)求y的最大值.

查看答案和解析>>

同步练习册答案