精英家教网 > 高中数学 > 题目详情
若定义在R上的函数f(x)=
6
x2+1
+x2,则它能取到的最小值为(  )
A、2
B、4
C、2
6
D、2
6
-1
考点:基本不等式
专题:不等式的解法及应用
分析:变形利用基本不等式的性质即可得出.
解答: 解:函数f(x)=
6
x2+1
+x2+1-1≥2
6
x2+1
•(x2+1)
-1
=2
6
-1.当且仅当x2+1=
6
时取等号.
∴f(x)能取到的最小值为2
6
-1

故选:D.
点评:本题考查了基本不等式的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过点M(-2,0)作斜率为k1(k1≠0)的直线与双曲线x2-
y2
3
=1交于A、B两点,线段AB的中点为P,O为坐标原点,OP的斜率为k2,则k1k2等于(  )
A、
1
3
B、3
C、-
1
3
D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

从分别写有1,2,3,4,5的五张卡片中任取两张,假设每张卡片被取到的概率相等,且每张卡片上只有一个数字,则收到的两张卡片上的数字之和为偶数的概率为(  )
A、
4
5
B、
16
25
C、
13
25
D、
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC内一点P满足
AP
AB
AC
,若△PAB的面积与△ABC的面积之比为1:3,△PAC的面积与△ABC的面积之比为1:4,则实数λ,μ的值为(  )
A、λ=
1
4
,μ=
1
3
B、λ=
1
3
,μ=
1
4
C、λ=
2
3
,μ=
1
3
D、λ=
3
4
,μ=
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

将正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,E是CD的中点,则AE与平面ABD所成角的正弦值为(  )
A、
1
2
B、
6
3
C、
6
6
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱的平面展开图,各侧面都是正方形,在这个正三棱柱中:
①AB1∥BC1
②AC1与BC是异面直线;
③AB1与BC所成的角的余弦值为
2
4

④BC1与A1C垂直.
其中正确的是(  )
A、①③B、②③C、②④D、②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
mx2+lnx-2x在定义域内是增函数,则实数m的取值范围为(  )
A、[0,+∞)
B、(0,+∞)
C、[-3,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(4)=f(-2)=1,且y=f′(x)的图象如图所示,则不等式f(x)<1的解集是(  )
A、(-2,0)
B、(0,4)
C、(-2,4)
D、(-∞,-2)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

某班50名学生在一次百米测试中,成绩(单位:秒)全部介于13与18秒之间,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.若从第一、第五组中随机取出两个成绩,求这两个成绩一个在第一组,一个在第五组的概率.

查看答案和解析>>

同步练习册答案