精英家教网 > 高中数学 > 题目详情
13.设0<a<1,函数y=a2x+2ax-1在[-1,1]上的最大值是14,求a的值.

分析 利用换元法,通过二次函数的闭区间上的最大值,列出方程求解即可.

解答 解:令t=ax(a>0且a≠1),则原函数化为y=(t+1)2-2(t>0).
当0<a<1时,x∈[-1,1],t=ax∈[a,$\frac{1}{a}$],---------(4分)
此时f(t)在[a,$\frac{1}{a}$]上为增函数.
所以f(t)max=f($\frac{1}{a}$)=($\frac{1}{a}$+1)2-2=14.---(8分)
所以($\frac{1}{a}$+1)2=16,所以a=-$\frac{1}{5}$或a=$\frac{1}{3}$.
又因为0<a<1,所以a=$\frac{1}{3}$.---------(12分)

点评 本题考查函数的最值的求法,换元法的应用,二次函数的最值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.双曲线$\frac{x^2}{9}-{y^2}=1$的实轴长为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ex
(1)求曲线y=f(x)在(1,f(1))处的切线方程;
(2)证明:f(x)>lnx+2,在(0,+∞)上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设向量$\overrightarrow{a}$=(λ,λ-2),$\overrightarrow{b}$=(1,2),若(2$\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$),则λ=(  )
A.-1或$-\frac{7}{4}$B.-1或$\frac{7}{4}$C.1或-$\frac{7}{4}$D.1或$\frac{7}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.P为△OAB内一点,$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,则(x,y)有可能是(  )
A.$({\frac{1}{2},\frac{{\sqrt{3}}}{2}})$B.(1,1)C.$({\frac{1}{5},\frac{2}{5}})$D.$({-\frac{1}{2},-\frac{1}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知p:y=ax(a>0,且a≠1)在R上为增函数,q:直线3x+4y+a=0与圆x2+y2=1相交.若p真q假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,且PA=PD=$\frac{\sqrt{2}}{2}$AD
(1)求证:平面PAB⊥平面PDC.
(2)求点C到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.关于x的方程(m+3)x2-4mx+2m-1=0的两根异号,且负根的绝对值比正根大,那么实数m的取值范围为(  )
A.(-3,0)B.(0,3)C.(-∞,-3)∪(0,+∞)D.(-∞,0)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求适合下列条件的圆锥曲线的标准方程.
(1)与椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1有公共焦点,且离心率为2的双曲线;
(2)中心在坐标原点,经过点A(2,3),且点F(2,0)为其右焦点的椭圆.

查看答案和解析>>

同步练习册答案