分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{m-n≥1}\\{m+n≤4}\\{m≥0}\\{n≥0}\end{array}\right.$作出可行域如图,![]()
A(4,0),
联立$\left\{\begin{array}{l}{m-n=1}\\{m+n=4}\end{array}\right.$,解得B($\frac{5}{2}$,$\frac{3}{2}$).
化目标函数u=m-2n为n=$\frac{m}{2}-\frac{u}{2}$,
由图可知,当直线n=$\frac{m}{2}-\frac{u}{2}$过A时,直线在n轴上的截距最小,z有最大值为4;
当直线n=$\frac{m}{2}-\frac{u}{2}$过B时,直线在n轴上的截距最大,z有最小值为$-\frac{1}{2}$.
∴u=m-2n的取值范围是:$[{-\frac{1}{2},4}]$.
故答案为:$[{-\frac{1}{2},4}]$.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | 2-$\sqrt{3}$ | C. | $\frac{32}{3}$ | D. | $\frac{35}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 当x=y=a时,数列{an}有最大值$\frac{a}{2}$ | |
| B. | 设bn=an+1-an(n∈N*),则数列{bn}为递减数列 | |
| C. | 对任意的n∈N*,始终有${a_n}≤\frac{xy}{z}$ | |
| D. | 对任意的n∈N*,都有${a_n}≤\frac{xy}{x+y}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-∞,\frac{1}{2}}]$ | B. | $({-∞,\frac{1}{2}})$ | C. | $[\frac{5}{2},+∞)$ | D. | $({\frac{3}{2},+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年份200x(年) | 0 | 1 | 2 | 3 | 4 |
| 人口数y(十万) | 5 | 7 | 8 | 11 | 19 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com