精英家教网 > 高中数学 > 题目详情
已知tan(α+β)=
1
2
,tan(α+
π
4
)=-
1
3
,则tan(β-
π
4
)=(  )
A、2
B、
2
C、1
D、
2
2
考点:两角和与差的正切函数
专题:三角函数的求值
分析:由于β-
π
4
=(α+β)-(α+
π
4
),利用两角差的正切公式计算即可.
解答: 解:∵tan(α+β)=
1
2
,tan(α+
π
4
)=-
1
3

则tan(β-
π
4
)=tan[(α+β)-(α+
π
4
)]=
tan(α+β)-tan(α+
π
4
)
1+tan(α+β)tan(α+
π
4
)
=
1
2
-(-
1
3
)
1+
1
2
×(-
1
3
)
=1.
故选:C.
点评:本题考查两角差的正切,观察得到tan(β-
π
4
)=tan[(α+β)-(α+
π
4
)]是关键,考查运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数y=
x
+3
3x2
+6
6x5
+a5(a为常数)的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=xm-3,m是正整数的图象关于y轴对称,且在区间(0,+∞)是减函数,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2x=3y=m,且
1
x
+
1
y
=2,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sinx•sin(x+
π
2
)的最小正周期是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.
(Ⅰ)求角A的大小;
(Ⅱ)若a=5,b+c=7,求△ABC的面积.(改编题)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,且f(x+1)为奇函数.若f(2)=1,则f(1)+f(2)+f(3)+…+f(2014)=(  )
A、1B、2014
C、0D、-2014

查看答案和解析>>

科目:高中数学 来源: 题型:

2cos40°+cos10°(1+tan60°tan10°)
1+cos10°
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=log0.34,b=log43,c=0.3-2,则a,b,c的大小关系是(  )
A、c<a<b
B、b<a<c
C、a<c<b
D、a<b<c

查看答案和解析>>

同步练习册答案