精英家教网 > 高中数学 > 题目详情
19.文艺演出中要求语言类节目不能相邻,现有4个歌舞类节目和2个语言类节目,若从中任意选出4个排成节目单,则能排出不同节目单的数量最多是(  )
A.72B.120C.144D.288

分析 根据题意,分3种情况讨论:①、取出的4个节目都是歌舞类节目,②、取出的4个节目有3个歌舞类节目,1个语言类节目,③、取出的4个节目有2个歌舞类节目,2个语言类节目,分别求出每种情况下可以排出节目单的数目,由分类计数原理计算可得答案.

解答 解:根据题意,分3种情况讨论:
①、取出的4个节目都是歌舞类节目,有1种取法,将4个节目全排列,有A44=24种可能,即可以排出24个不同节目单,
②、取出的4个节目有3个歌舞类节目,1个语言类节目,
有C21C43=8种取法,将4个节目全排列,有A44=24种可能,
则以排出8×24=192个不同节目单,
③、取出的4个节目有2个歌舞类节目,2个语言类节目,
有C22C42=6种取法,将2个歌舞类节目全排列,有A22=2种情况,排好后有3个空位,
在3个空位中任选2个,安排2个语言类节目,有A32=6种情况,
此时有6×2×6=72种可能,
就可以排出72个不同节目单,
则一共可以排出24+192+72=288个不同节目单,
故选:D.

点评 本题考查排列、组合的综合应用,注意要根据取出语言类节目的数目分情况讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.点P(1,3)到直线x-2y-5=0的距离为2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若命题“?x∈R,|x+1|+|x-a|<4”是真命题,则实数a的取值范围是(-5,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题p:sin2x=1,命题q:tanx=1,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数$y=\frac{1}{{\sqrt{|x|-2}}}$的定义域是(  )
A.[-2,2]B.(-∞,-2]∪[2,+∞)C.(-2,2)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知圆C1和C2关于直线y=-x对称,若圆C1的方程是(x+5)2+y2=4,则圆C2的方程是(  )
A.(x+5)2+y2=2B.x2+(y+5)2=4C.(x-5)2+y2=2D.x2+(y-5)2=4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={(x,y)|y=x+1},集合B={(x,y)|y=2x},则集合A∩B等于(  )
A.(1,2)B.{1,2}C.{(1,2)}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD的一个侧面PAD为等边三角形,且平面PAD⊥底面ABCD,四边形ABCD是直角梯形,∠BCD=∠ADC=Rt∠,AD=2BC=2CD=2,M是PD的中点.
(1)求证:CM∥平面PAB;
(2)求直线CD与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如果如图所示程序执行后输出的结果是480,那么在程序UNTIL后面的“条件”应为(  )
A.i>8B.i>=8C.i<8D.i<=8

查看答案和解析>>

同步练习册答案