| A. | cosx | B. | -sinx | C. | -cosx | D. | sinx |
分析 由已知,f0(x)=cosx,f1(x)=f0′(x)=-sinx,f2(x)=f1′(x)=-cosx,f3(x)=f2′(x)=sinx,f4(x)=f3′(x)=cosx,发现fn(x)以4为周期,结果循环出现,利用此规律将n=2011转化为n=3的情况求解.
解答 解:∵f0(x)=cosx,
∴f1(x)=f0′(x)=-sinx,
f2(x)=f1′(x)=-cosx,
f3(x)=f2′(x)=sinx,
f4(x)=f3′(x)=cosx
…
从第五项开始,fn(x)的解析式重复出现,每4次一循环.
∴f2011(x)=f4×502+3(x)=f3(x)=sinx,
故选:D.
点评 本题考查函数求导运算,由于f2011(x)中下标数值2011较大,所以探究fn(x)的周期性成为必要与自然,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{5\sqrt{3}}{3}$ | D. | $\frac{4\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x+1)2+(y+1)2=2 | B. | (x+1)2+(y-1)2=2 | C. | (x+1)2+(y+1)2=4 | D. | (x+1)2+(y-1)2=4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{0}$ | B. | 2$\overrightarrow{BC}$ | C. | -2$\overrightarrow{BC}$ | D. | 2$\overrightarrow{AC}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com