分析 作出不等式组对应的平面区域,根据斜率和距离的几何意义进行求解即可.
解答
解:作出不等式组对应的平面区域,
设k=$\frac{y}{x+2}$,则k的几何意义是区域内的点到E(-2,0)的斜率,
设z=x2+(y+$\sqrt{3}$)2,则z的几何意义为区域内的点到点F(0,-$\sqrt{3}$)的距离的平方,
由图象知AF的斜率最大,由$\left\{\begin{array}{l}{y=2}\\{2x+y-2=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$,即A(0,2),
则k=$\frac{2}{0+2}=1$,即a=1,
C(1,0)到F到的距离最小,
此时|CF|=$\sqrt{{1}^{2}+(\sqrt{3})^{2}}$=$\sqrt{1+3}=\sqrt{4}$=2,
故d=|CF|2=4,
则a+b=1+4=5,
故答案为:5.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,利用直线斜率和距离公式结合数形结合是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com