15£®2015Äê¹úÇ쳤¼ÙÆÚ¼ä£¬¸÷ÂÃÓξ°ÇøÈËÊý·¢Éú¡°¾®Å硱ÏÖÏ󣬸øÂÃÓÎÇøµÄ¹ÜÀíÌá³öÁËÑϾþµÄ¿¼Ñ飬¹úÇìºó£¬Ä³ÂÃÓÎÇø¹ÜÀí²¿ÃŶԸÃÇø¾°µã½øÒ»²½¸ÄÔìÉý¼¶£¬Ìá¸ßÂÃÓÎÔö¼ÓÖµ£¬¾­¹ýÊг¡µ÷²é£¬ÂÃÓÎÔö¼ÓÖµyÍòÔªÓëͶÈëxÍòÔªÖ®¼äÂú×㣺y=$\frac{27}{50}$x-ax2-ln $\frac{x}{10}$£¬x¡Ê£¨2£¬t]£¬µ±x=10ʱ£¬y=$\frac{22}{5}$£®
£¨1£©Çóy=f£¨x£©µÄ½âÎöʽ£»
£¨2£©ÇóÂÃÓÎÔö¼ÓÖµyÈ¡µÃ×î´óֵʱ¶ÔÓ¦µÄxÖµ£®

·ÖÎö £¨1£©´úÈëÇóÖµ¿ÉµÃa=$\frac{1}{100}$£¬Çó³ö½âÎöʽ¼´¿É£»
£¨2£©Ç󵼺¯Êý£¬¸ù¾ÝÌõ¼þ£¬ÀûÓõ¼º¯ÊýÇóº¯ÊýµÄµ¥µ÷ÐÔ£¬½ø¶øÇó³öº¯ÊýµÄ×îÖµ£®

½â´ð ½â£º£¨1£©¡ßµ±x=10ʱ£¬y=$\frac{22}{5}$£¬¼´$\frac{27}{50}$¡Á10-a¡Á102-ln 1=$\frac{22}{5}$£¬½âµÃa=$\frac{1}{100}$£®
¡àf£¨x£©=$\frac{27}{50}$x-$\frac{x2}{100}$-ln $\frac{x}{10}$£®x¡Ê£¨2£¬t]¡­£¨4·Ö£©
£¨2£©¶Ôf£¨x£©Çóµ¼£¬µÃ$f'£¨x£©=\frac{27}{50}-\frac{x}{50}-\frac{1}{x}=-\frac{{{x^2}-27x+50}}{50x}=-\frac{£¨x-2£©£¨x-25£©}{50x}$£®
Áîf¡ä£¨x£©=0£¬µÃx=25»òx=2£¨ÉáÈ¥£©£®¡­£¨6·Ö£©
µ±x¡Ê£¨2£¬25£©Ê±£¬f¡ä£¨x£©£¾0£¬
¡àf£¨x£©ÔÚ£¨2£¬25£©ÉÏÊÇÔöº¯Êý£»
µ±x¡Ê£¨25£¬+¡Þ£©Ê±£¬f¡ä£¨x£©£¼0£¬
¡àf£¨x£©ÔÚ£¨25£¬+¡Þ£©ÉÏÊǼõº¯Êý
ËùÒÔµ±t£¾25ʱ£¬µ±x¡Ê£¨2£¬25£©Ê±£¬f¡ä£¨x£©£¾0£¬f£¨x£©ÔÚ£¨2£¬25£©ÉÏÊÇÔöº¯Êý£»
µ±x¡Ê£¨25£¬t]ʱ£¬f¡ä£¨x£©£¼0£¬f£¨x£©ÔÚ£¨25£¬t]ÉÏÊǼõº¯Êý£®
¡àµ±x=25ʱ£¬yÈ¡µÃ×î´óÖµ£» ¡­£¨8·Ö£©
µ±2£¼t¡Ü25ʱ£¬µ±x¡Ê£¨2£¬t£©Ê±£¬f¡ä£¨x£©£¾0£¬f£¨x£©ÔÚ£¨2£¬t£©ÉÏÊÇÔöº¯Êý£¬
¡àµ±x=tʱ£¬yÈ¡µÃ×î´óÖµ                       ¡­£¨10·Ö£©
×ÛÉÏ£ºµ±t£¾25ʱ£¬x=25ʱ£¬yÈ¡µÃ×î´óÖµ
µ±2£¼t¡Ü25ʱ£¬x=tʱ£¬yÈ¡µÃ×î´óÖµ¡­£¨12·Ö£©

µãÆÀ ¿¼²éÁ˺¯ÊýµÄÓ¦Óú͵¼º¯ÊýÇóº¯ÊýµÄ×îÖµ£®ÄѵãÊǶÔ×Ô±äÁ¿tµÄȡֵ·ÖÀàÌÖÂÛ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®º¯Êýf£¨x£©=£¨$\frac{1}{2}$£©${\;}^{lg£¨{x}^{2}-4x+3£©}$µÄµ¥µ÷ÔöÇø¼äÊÇ£¨-¡Þ£¬1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÏÂÁнáÂÛ²»ÕýÈ·µÄÊǢܣ¨ÌîÐòºÅ£©
¢ÙÈôy=3£¬Ôòy¡ä=0£»
¢ÚÈôf£¨x£©=3x+1£¬Ôòf¡ä£¨1£©=3£»
¢ÛÈôy=-$\sqrt{x}$+x£¬Ôòy¡ä=-$\frac{1}{2\sqrt{x}}$+1£»
¢ÜÈôy=sinx+cosx£¬Ôòy¡ä=cosx+sinx£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÔÚ¡÷ABCÖУ¬$\overrightarrow{AD}$=$2\overrightarrow{DB}$£¬Èô$\overrightarrow{CB}$=$\overrightarrow{a}$£¬$\overrightarrow{CA}$=$\overrightarrow{b}$£¬Ôò$\overrightarrow{CD}$=£¨¡¡¡¡£©
A£®$\frac{1}{3}\overrightarrow{a}+\frac{2}{3}\overrightarrow{b}$B£®$\frac{2}{3}\overrightarrow{a}+\frac{1}{3}\overrightarrow{b}$C£®$\frac{3}{5}\overrightarrow{a}+\frac{4}{5}\overrightarrow{b}$D£®$\frac{4}{5}\overrightarrow{a}+\frac{3}{5}\overrightarrow{b}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑ֪ij¼¸ºÎÌåµÄÈýÊÓͼµÄ²àÊÓͼÊÇÒ»¸öÕýÈý½ÇÐΣ¬ÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýµÈÓÚ£¨¡¡¡¡£©
A£®12$\sqrt{3}$B£®16$\sqrt{3}$C£®20$\sqrt{3}$D£®32$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªµãP£¨x£¬y£©µÄ×ø±êÂú×ãÌõ¼þ$\left\{\begin{array}{l}{x¡Ü1}\\{y¡Ü2}\\{2x+y-2¡Ý0}\end{array}\right.$£¬¼Ç$\frac{y}{x+2}$µÄ×î´óֵΪa£¬x2+£¨y+$\sqrt{3}$£©2µÄ×îСֵΪb£¬Ôòa+b=5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®º¯Êýf£¨x£©=Asin£¨¦Øx+$\frac{¦Ð}{6}$£©£¨A£¾0£¬¦Ø£¾0£©µÄͼÏóÓëxÖáµÄ½»µãµÄºá×ø±ê¹¹³ÉÒ»¸ö¹«²îΪ$\frac{¦Ð}{2}$µÄµÈ²îÊýÁУ¬ÒªµÃµ½º¯Êýg£¨x£©=Acos¦ØxµÄͼÏó£¬Ö»Ð轫f£¨x£©µÄͼÏ󣨡¡¡¡£©
A£®Ïò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»B£®ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»
C£®Ïò×óÆ½ÒÆ$\frac{2¦Ð}{3}$¸öµ¥Î»D£®ÏòÓÒÆ½ÒÆ$\frac{2¦Ð}{3}$¸öµ¥Î»

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=lnx+x-3µÄÁãµãÔÚÇø¼ä£¨n£¬n+1£©£¨n¡ÊZ£©ÄÚ£¬Ôòn=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èçͼ£¬Íø¸ñÖ½ÉÏСÕý·½Ðεı߳¤Îª1£¬´ÖʵÏß»­³öµÄÊÇij¶àÃæÌåµÄÈýÊÓͼ£¬Ôò¸Ã¶àÃæÌåµÄ¸÷¸öÃæÖУ¬Ö±½ÇÈý½ÇÐεĸöÊýÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸